Fix markdown failures on contrib/terraform (#7082)

This fixes markdown failures on contrib/terraform.
This commit is contained in:
Kenichi Omichi 2020-12-25 12:10:27 -08:00 committed by GitHub
parent bbab1013c5
commit dc86b2063a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 187 additions and 122 deletions

View file

@ -67,7 +67,7 @@ markdownlint:
- npm install -g markdownlint-cli@0.22.0
script:
# TODO: Remove "grep -v" part to enable markdownlint for all md files
- markdownlint $(find . -name "*.md" | grep -v .github | grep -v roles | grep -v contrib/terraform) --ignore docs/_sidebar.md --ignore contrib/dind/README.md
- markdownlint $(find . -name "*.md" | grep -v .github | grep -v roles) --ignore docs/_sidebar.md --ignore contrib/dind/README.md
ci-matrix:
stage: unit-tests

View file

@ -1,40 +1,44 @@
## Kubernetes on AWS with Terraform
# Kubernetes on AWS with Terraform
**Overview:**
## Overview
This project will create:
* VPC with Public and Private Subnets in # Availability Zones
* Bastion Hosts and NAT Gateways in the Public Subnet
* A dynamic number of masters, etcd, and worker nodes in the Private Subnet
* even distributed over the # of Availability Zones
* AWS ELB in the Public Subnet for accessing the Kubernetes API from the internet
**Requirements**
- VPC with Public and Private Subnets in # Availability Zones
- Bastion Hosts and NAT Gateways in the Public Subnet
- A dynamic number of masters, etcd, and worker nodes in the Private Subnet
- even distributed over the # of Availability Zones
- AWS ELB in the Public Subnet for accessing the Kubernetes API from the internet
## Requirements
- Terraform 0.12.0 or newer
**How to Use:**
## How to Use
- Export the variables for your AWS credentials or edit `credentials.tfvars`:
```
```commandline
export TF_VAR_AWS_ACCESS_KEY_ID="www"
export TF_VAR_AWS_SECRET_ACCESS_KEY ="xxx"
export TF_VAR_AWS_SSH_KEY_NAME="yyy"
export TF_VAR_AWS_DEFAULT_REGION="zzz"
```
- Update `contrib/terraform/aws/terraform.tfvars` with your data. By default, the Terraform scripts use Ubuntu 18.04 LTS (Bionic) as base image. If you want to change this behaviour, see note "Using other distrib than Ubuntu" below.
- Create an AWS EC2 SSH Key
- Run with `terraform apply --var-file="credentials.tfvars"` or `terraform apply` depending if you exported your AWS credentials
Example:
```commandline
terraform apply -var-file=credentials.tfvars
```
- Terraform automatically creates an Ansible Inventory file called `hosts` with the created infrastructure in the directory `inventory`
- Ansible will automatically generate an ssh config file for your bastion hosts. To connect to hosts with ssh using bastion host use generated ssh-bastion.conf.
Ansible automatically detects bastion and changes ssh_args
```commandline
ssh -F ./ssh-bastion.conf user@$ip
```
@ -42,9 +46,11 @@ ssh -F ./ssh-bastion.conf user@$ip
- Once the infrastructure is created, you can run the kubespray playbooks and supply inventory/hosts with the `-i` flag.
Example (this one assumes you are using Ubuntu)
```commandline
ansible-playbook -i ./inventory/hosts ./cluster.yml -e ansible_user=ubuntu -b --become-user=root --flush-cache
```
***Using other distrib than Ubuntu***
If you want to use another distribution than Ubuntu 18.04 (Bionic) LTS, you can modify the search filters of the 'data "aws_ami" "distro"' in variables.tf.
@ -52,7 +58,7 @@ For example, to use:
- Debian Jessie, replace 'data "aws_ami" "distro"' in variables.tf with
```
```ini
data "aws_ami" "distro" {
most_recent = true
@ -72,7 +78,7 @@ data "aws_ami" "distro" {
- Ubuntu 16.04, replace 'data "aws_ami" "distro"' in variables.tf with
```
```ini
data "aws_ami" "distro" {
most_recent = true
@ -92,7 +98,7 @@ data "aws_ami" "distro" {
- Centos 7, replace 'data "aws_ami" "distro"' in variables.tf with
```
```ini
data "aws_ami" "distro" {
most_recent = true
@ -114,7 +120,7 @@ data "aws_ami" "distro" {
You can use the following set of commands to get the kubeconfig file from your newly created cluster. Before running the commands, make sure you are in the project's root folder.
```
```commandline
# Get the controller's IP address.
CONTROLLER_HOST_NAME=$(cat ./inventory/hosts | grep "\[kube-master\]" -A 1 | tail -n 1)
CONTROLLER_IP=$(cat ./inventory/hosts | grep $CONTROLLER_HOST_NAME | grep ansible_host | cut -d'=' -f2)
@ -134,22 +140,23 @@ sed -i "s^server:.*^server: https://$LB_HOST:6443^" ~/.kube/config
kubectl get nodes
```
**Troubleshooting**
## Troubleshooting
***Remaining AWS IAM Instance Profile***:
### Remaining AWS IAM Instance Profile
If the cluster was destroyed without using Terraform it is possible that
the AWS IAM Instance Profiles still remain. To delete them you can use
the `AWS CLI` with the following command:
```
```commandline
aws iam delete-instance-profile --region <region_name> --instance-profile-name <profile_name>
```
***Ansible Inventory doesn't get created:***
### Ansible Inventory doesn't get created
It could happen that Terraform doesn't create an Ansible Inventory file automatically. If this is the case copy the output after `inventory=` and create a file named `hosts`in the directory `inventory` and paste the inventory into the file.
**Architecture**
## Architecture
Pictured is an AWS Infrastructure created with this Terraform project distributed over two Availability Zones.

View file

@ -9,6 +9,7 @@ This will install a Kubernetes cluster on an OpenStack Cloud. It should work on
most modern installs of OpenStack that support the basic services.
### Known compatible public clouds
- [Auro](https://auro.io/)
- [Betacloud](https://www.betacloud.io/)
- [CityCloud](https://www.citycloud.com/)
@ -23,8 +24,8 @@ most modern installs of OpenStack that support the basic services.
- [VexxHost](https://vexxhost.com/)
- [Zetta](https://www.zetta.io/)
## Approach
The terraform configuration inspects variables found in
[variables.tf](variables.tf) to create resources in your OpenStack cluster.
There is a [python script](../terraform.py) that reads the generated`.tfstate`
@ -32,6 +33,7 @@ file to generate a dynamic inventory that is consumed by the main ansible script
to actually install kubernetes and stand up the cluster.
### Networking
The configuration includes creating a private subnet with a router to the
external net. It will allocate floating IPs from a pool and assign them to the
hosts where that makes sense. You have the option of creating bastion hosts
@ -39,19 +41,23 @@ inside the private subnet to access the nodes there. Alternatively, a node with
a floating IP can be used as a jump host to nodes without.
#### Using an existing router
It is possible to use an existing router instead of creating one. To use an
existing router set the router\_id variable to the uuid of the router you wish
to use.
For example:
```
```ShellSession
router_id = "00c542e7-6f46-4535-ae95-984c7f0391a3"
```
### Kubernetes Nodes
You can create many different kubernetes topologies by setting the number of
different classes of hosts. For each class there are options for allocating
floating IP addresses or not.
- Master nodes with etcd
- Master nodes without etcd
- Standalone etcd hosts
@ -64,10 +70,12 @@ master nodes with etcd replicas. As an example, if you have three master nodes w
etcd replicas and three standalone etcd nodes, the script will fail since there are
now six total etcd replicas.
### GlusterFS
### GlusterFS shared file system
The Terraform configuration supports provisioning of an optional GlusterFS
shared file system based on a separate set of VMs. To enable this, you need to
specify:
- the number of Gluster hosts (minimum 2)
- Size of the non-ephemeral volumes to be attached to store the GlusterFS bricks
- Other properties related to provisioning the hosts
@ -87,7 +95,9 @@ binaries available on hyperkube v1.4.3_coreos.0 or higher.
- you have a pair of keys generated that can be used to secure the new hosts
## Module Architecture
The configuration is divided into three modules:
- Network
- IPs
- Compute
@ -100,12 +110,13 @@ to be updated.
You can force your existing IPs by modifying the compute variables in
`kubespray.tf` as follows:
```
```ini
k8s_master_fips = ["151.101.129.67"]
k8s_node_fips = ["151.101.129.68"]
```
## Terraform
Terraform will be used to provision all of the OpenStack resources with base software as appropriate.
### Configuration
@ -115,10 +126,10 @@ Terraform will be used to provision all of the OpenStack resources with base sof
Create an inventory directory for your cluster by copying the existing sample and linking the `hosts` script (used to build the inventory based on Terraform state):
```ShellSession
$ cp -LRp contrib/terraform/openstack/sample-inventory inventory/$CLUSTER
$ cd inventory/$CLUSTER
$ ln -s ../../contrib/terraform/openstack/hosts
$ ln -s ../../contrib
cp -LRp contrib/terraform/openstack/sample-inventory inventory/$CLUSTER
cd inventory/$CLUSTER
ln -s ../../contrib/terraform/openstack/hosts
ln -s ../../contrib
```
This will be the base for subsequent Terraform commands.
@ -138,13 +149,13 @@ please read the [OpenStack provider documentation](https://www.terraform.io/docs
The recommended authentication method is to describe credentials in a YAML file `clouds.yaml` that can be stored in:
* the current directory
* `~/.config/openstack`
* `/etc/openstack`
- the current directory
- `~/.config/openstack`
- `/etc/openstack`
`clouds.yaml`:
```
```yaml
clouds:
mycloud:
auth:
@ -162,7 +173,7 @@ clouds:
If you have multiple clouds defined in your `clouds.yaml` file you can choose
the one you want to use with the environment variable `OS_CLOUD`:
```
```ShellSession
export OS_CLOUD=mycloud
```
@ -174,7 +185,7 @@ from Horizon under *Project* -> *Compute* -> *Access & Security* -> *API Access*
With identity v2:
```
```ShellSession
source openrc
env | grep OS
@ -191,7 +202,7 @@ OS_IDENTITY_API_VERSION=2
With identity v3:
```
```ShellSession
source openrc
env | grep OS
@ -208,24 +219,24 @@ OS_IDENTITY_API_VERSION=3
OS_USER_DOMAIN_NAME=Default
```
Terraform does not support a mix of DomainName and DomainID, choose one or the
other:
Terraform does not support a mix of DomainName and DomainID, choose one or the other:
```
* provider.openstack: You must provide exactly one of DomainID or DomainName to authenticate by Username
```
- provider.openstack: You must provide exactly one of DomainID or DomainName to authenticate by Username
```
```ShellSession
unset OS_USER_DOMAIN_NAME
export OS_USER_DOMAIN_ID=default
```
or
```ShellSession
unset OS_PROJECT_DOMAIN_ID
set OS_PROJECT_DOMAIN_NAME=Default
```
#### Cluster variables
The construction of the cluster is driven by values found in
[variables.tf](variables.tf).
@ -269,13 +280,15 @@ For your cluster, edit `inventory/$CLUSTER/cluster.tfvars`.
|`k8s_nodes` | Map containing worker node definition, see explanation below |
##### k8s_nodes
Allows a custom defintion of worker nodes giving the operator full control over individual node flavor and
availability zone placement. To enable the use of this mode set the `number_of_k8s_nodes` and
`number_of_k8s_nodes_no_floating_ip` variables to 0. Then define your desired worker node configuration
using the `k8s_nodes` variable.
For example:
```
```ini
k8s_nodes = {
"1" = {
"az" = "sto1"
@ -296,14 +309,16 @@ k8s_nodes = {
```
Would result in the same configuration as:
```
```ini
number_of_k8s_nodes = 3
flavor_k8s_node = "83d8b44a-26a0-4f02-a981-079446926445"
az_list = ["sto1", "sto2", "sto3"]
```
And:
```
```ini
k8s_nodes = {
"ing-1" = {
"az" = "sto1"
@ -357,7 +372,8 @@ Would result in three nodes in each availability zone each with their own separa
flavor and floating ip configuration.
The "schema":
```
```ini
k8s_nodes = {
"key | node name suffix, must be unique" = {
"az" = string
@ -366,6 +382,7 @@ k8s_nodes = {
},
}
```
All values are required.
#### Terraform state files
@ -374,10 +391,10 @@ In the cluster's inventory folder, the following files might be created (either
or manually), to prevent you from pushing them accidentally they are in a
`.gitignore` file in the `terraform/openstack` directory :
* `.terraform`
* `.tfvars`
* `.tfstate`
* `.tfstate.backup`
- `.terraform`
- `.tfvars`
- `.tfstate`
- `.tfstate.backup`
You can still add them manually if you want to.
@ -387,17 +404,19 @@ Before Terraform can operate on your cluster you need to install the required
plugins. This is accomplished as follows:
```ShellSession
$ cd inventory/$CLUSTER
$ terraform init ../../contrib/terraform/openstack
cd inventory/$CLUSTER
terraform init ../../contrib/terraform/openstack
```
This should finish fairly quickly telling you Terraform has successfully initialized and loaded necessary modules.
### Provisioning cluster
You can apply the Terraform configuration to your cluster with the following command
issued from your cluster's inventory directory (`inventory/$CLUSTER`):
```ShellSession
$ terraform apply -var-file=cluster.tfvars ../../contrib/terraform/openstack
terraform apply -var-file=cluster.tfvars ../../contrib/terraform/openstack
```
if you chose to create a bastion host, this script will create
@ -408,18 +427,20 @@ or move that file. If you want to use this, just leave it there, as ansible will
pick it up automatically.
### Destroying cluster
You can destroy your new cluster with the following command issued from the cluster's inventory directory:
```ShellSession
$ terraform destroy -var-file=cluster.tfvars ../../contrib/terraform/openstack
terraform destroy -var-file=cluster.tfvars ../../contrib/terraform/openstack
```
If you've started the Ansible run, it may also be a good idea to do some manual cleanup:
* remove SSH keys from the destroyed cluster from your `~/.ssh/known_hosts` file
* clean up any temporary cache files: `rm /tmp/$CLUSTER-*`
- remove SSH keys from the destroyed cluster from your `~/.ssh/known_hosts` file
- clean up any temporary cache files: `rm /tmp/$CLUSTER-*`
### Debugging
You can enable debugging output from Terraform by setting
`OS_DEBUG` to 1 and`TF_LOG` to`DEBUG` before running the Terraform command.
@ -427,8 +448,8 @@ You can enable debugging output from Terraform by setting
Terraform can output values that are useful for configure Neutron/Octavia LBaaS or Cinder persistent volume provisioning as part of your Kubernetes deployment:
- `private_subnet_id`: the subnet where your instances are running is used for `openstack_lbaas_subnet_id`
- `floating_network_id`: the network_id where the floating IP are provisioned is used for `openstack_lbaas_floating_network_id`
- `private_subnet_id`: the subnet where your instances are running is used for `openstack_lbaas_subnet_id`
- `floating_network_id`: the network_id where the floating IP are provisioned is used for `openstack_lbaas_floating_network_id`
## Ansible
@ -439,9 +460,9 @@ Terraform can output values that are useful for configure Neutron/Octavia LBaaS
Ensure your local ssh-agent is running and your ssh key has been added. This
step is required by the terraform provisioner:
```
$ eval $(ssh-agent -s)
$ ssh-add ~/.ssh/id_rsa
```ShellSession
eval $(ssh-agent -s)
ssh-add ~/.ssh/id_rsa
```
If you have deployed and destroyed a previous iteration of your cluster, you will need to clear out any stale keys from your SSH "known hosts" file ( `~/.ssh/known_hosts`).
@ -453,13 +474,13 @@ generated`.tfstate` file to generate a dynamic inventory recognizes
some variables within a "metadata" block, defined in a "resource"
block (example):
```
```ini
resource "openstack_compute_instance_v2" "example" {
...
metadata {
ssh_user = "ubuntu"
prefer_ipv6 = true
python_bin = "/usr/bin/python3"
python_bin = "/usr/bin/python3"
}
...
}
@ -474,8 +495,8 @@ instance should be preferred over IPv4.
Bastion access will be determined by:
- Your choice on the amount of bastion hosts (set by `number_of_bastions` terraform variable).
- The existence of nodes/masters with floating IPs (set by `number_of_k8s_masters`, `number_of_k8s_nodes`, `number_of_k8s_masters_no_etcd` terraform variables).
- Your choice on the amount of bastion hosts (set by `number_of_bastions` terraform variable).
- The existence of nodes/masters with floating IPs (set by `number_of_k8s_masters`, `number_of_k8s_nodes`, `number_of_k8s_masters_no_etcd` terraform variables).
If you have a bastion host, your ssh traffic will be directly routed through it. This is regardless of whether you have masters/nodes with a floating IP assigned.
If you don't have a bastion host, but at least one of your masters/nodes have a floating IP, then ssh traffic will be tunneled by one of these machines.
@ -486,7 +507,7 @@ So, either a bastion host, or at least master/node with a floating IP are requir
Make sure you can connect to the hosts. Note that Flatcar Container Linux by Kinvolk will have a state `FAILED` due to Python not being present. This is okay, because Python will be installed during bootstrapping, so long as the hosts are not `UNREACHABLE`.
```
```ShellSession
$ ansible -i inventory/$CLUSTER/hosts -m ping all
example-k8s_node-1 | SUCCESS => {
"changed": false,
@ -507,44 +528,55 @@ If it fails try to connect manually via SSH. It could be something as simple as
### Configure cluster variables
Edit `inventory/$CLUSTER/group_vars/all/all.yml`:
- **bin_dir**:
```
```yml
# Directory where the binaries will be installed
# Default:
# bin_dir: /usr/local/bin
# For Flatcar Container Linux by Kinvolk:
bin_dir: /opt/bin
```
- and **cloud_provider**:
```
```yml
cloud_provider: openstack
```
Edit `inventory/$CLUSTER/group_vars/k8s-cluster/k8s-cluster.yml`:
- Set variable **kube_network_plugin** to your desired networking plugin.
- **flannel** works out-of-the-box
- **calico** requires [configuring OpenStack Neutron ports](/docs/openstack.md) to allow service and pod subnets
```
```yml
# Choose network plugin (calico, weave or flannel)
# Can also be set to 'cloud', which lets the cloud provider setup appropriate routing
kube_network_plugin: flannel
```
- Set variable **resolvconf_mode**
```
```yml
# Can be docker_dns, host_resolvconf or none
# Default:
# resolvconf_mode: docker_dns
# For Flatcar Container Linux by Kinvolk:
resolvconf_mode: host_resolvconf
```
- Set max amount of attached cinder volume per host (default 256)
```
```yml
node_volume_attach_limit: 26
```
### Deploy Kubernetes
```
$ ansible-playbook --become -i inventory/$CLUSTER/hosts cluster.yml
```ShellSession
ansible-playbook --become -i inventory/$CLUSTER/hosts cluster.yml
```
This will take some time as there are many tasks to run.
@ -552,26 +584,36 @@ This will take some time as there are many tasks to run.
## Kubernetes
### Set up kubectl
1. [Install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) on your workstation
2. Add a route to the internal IP of a master node (if needed):
```
```ShellSession
sudo route add [master-internal-ip] gw [router-ip]
```
or
```
```ShellSession
sudo route add -net [internal-subnet]/24 gw [router-ip]
```
3. List Kubernetes certificates & keys:
```
1. List Kubernetes certificates & keys:
```ShellSession
ssh [os-user]@[master-ip] sudo ls /etc/kubernetes/ssl/
```
4. Get `admin`'s certificates and keys:
```
1. Get `admin`'s certificates and keys:
```ShellSession
ssh [os-user]@[master-ip] sudo cat /etc/kubernetes/ssl/admin-kube-master-1-key.pem > admin-key.pem
ssh [os-user]@[master-ip] sudo cat /etc/kubernetes/ssl/admin-kube-master-1.pem > admin.pem
ssh [os-user]@[master-ip] sudo cat /etc/kubernetes/ssl/ca.pem > ca.pem
```
5. Configure kubectl:
1. Configure kubectl:
```ShellSession
$ kubectl config set-cluster default-cluster --server=https://[master-internal-ip]:6443 \
--certificate-authority=ca.pem
@ -584,21 +626,24 @@ $ kubectl config set-credentials default-admin \
$ kubectl config set-context default-system --cluster=default-cluster --user=default-admin
$ kubectl config use-context default-system
```
7. Check it:
```
1. Check it:
```ShellSession
kubectl version
```
## GlusterFS
GlusterFS is not deployed by the standard`cluster.yml` playbook, see the
GlusterFS is not deployed by the standard `cluster.yml` playbook, see the
[GlusterFS playbook documentation](../../network-storage/glusterfs/README.md)
for instructions.
Basically you will install Gluster as
```ShellSession
$ ansible-playbook --become -i inventory/$CLUSTER/hosts ./contrib/network-storage/glusterfs/glusterfs.yml
```
```ShellSession
ansible-playbook --become -i inventory/$CLUSTER/hosts ./contrib/network-storage/glusterfs/glusterfs.yml
```
## What's next
@ -607,6 +652,7 @@ Try out your new Kubernetes cluster with the [Hello Kubernetes service](https://
## Appendix
### Migration from `number_of_k8s_nodes*` to `k8s_nodes`
If you currently have a cluster defined using the `number_of_k8s_nodes*` variables and wish
to migrate to the `k8s_nodes` style you can do it like so:

View file

@ -8,6 +8,7 @@ Provision a Kubernetes cluster with [Terraform](https://www.terraform.io) on
This will install a Kubernetes cluster on Packet bare metal. It should work in all locations and on most server types.
## Approach
The terraform configuration inspects variables found in
[variables.tf](variables.tf) to create resources in your Packet project.
There is a [python script](../terraform.py) that reads the generated`.tfstate`
@ -15,8 +16,10 @@ file to generate a dynamic inventory that is consumed by [cluster.yml](../../../
to actually install Kubernetes with Kubespray.
### Kubernetes Nodes
You can create many different kubernetes topologies by setting the number of
different classes of hosts.
- Master nodes with etcd: `number_of_k8s_masters` variable
- Master nodes without etcd: `number_of_k8s_masters_no_etcd` variable
- Standalone etcd hosts: `number_of_etcd` variable
@ -47,6 +50,7 @@ ssh-keygen -f ~/.ssh/id_rsa
```
## Terraform
Terraform will be used to provision all of the Packet resources with base software as appropriate.
### Configuration
@ -56,9 +60,9 @@ Terraform will be used to provision all of the Packet resources with base softwa
Create an inventory directory for your cluster by copying the existing sample and linking the `hosts` script (used to build the inventory based on Terraform state):
```ShellSession
$ cp -LRp contrib/terraform/packet/sample-inventory inventory/$CLUSTER
$ cd inventory/$CLUSTER
$ ln -s ../../contrib/terraform/packet/hosts
cp -LRp contrib/terraform/packet/sample-inventory inventory/$CLUSTER
cd inventory/$CLUSTER
ln -s ../../contrib/terraform/packet/hosts
```
This will be the base for subsequent Terraform commands.
@ -69,22 +73,23 @@ Your Packet API key must be available in the `PACKET_AUTH_TOKEN` environment var
This key is typically stored outside of the code repo since it is considered secret.
If someone gets this key, they can startup/shutdown hosts in your project!
For more information on how to generate an API key or find your project ID, please see:
https://support.packet.com/kb/articles/api-integrations
For more information on how to generate an API key or find your project ID, please see
[API Integrations](https://support.packet.com/kb/articles/api-integrations)
The Packet Project ID associated with the key will be set later in cluster.tfvars.
For more information about the API, please see:
https://www.packet.com/developers/api/
For more information about the API, please see [Packet API](https://www.packet.com/developers/api/)
Example:
```ShellSession
$ export PACKET_AUTH_TOKEN="Example-API-Token"
export PACKET_AUTH_TOKEN="Example-API-Token"
```
Note that to deploy several clusters within the same project you need to use [terraform workspace](https://www.terraform.io/docs/state/workspaces.html#using-workspaces).
#### Cluster variables
The construction of the cluster is driven by values found in
[variables.tf](variables.tf).
@ -95,10 +100,11 @@ This helps when identifying which hosts are associated with each cluster.
While the defaults in variables.tf will successfully deploy a cluster, it is recommended to set the following values:
* cluster_name = the name of the inventory directory created above as $CLUSTER
* packet_project_id = the Packet Project ID associated with the Packet API token above
- cluster_name = the name of the inventory directory created above as $CLUSTER
- packet_project_id = the Packet Project ID associated with the Packet API token above
#### Enable localhost access
Kubespray will pull down a Kubernetes configuration file to access this cluster by enabling the
`kubeconfig_localhost: true` in the Kubespray configuration.
@ -115,10 +121,10 @@ In the cluster's inventory folder, the following files might be created (either
or manually), to prevent you from pushing them accidentally they are in a
`.gitignore` file in the `terraform/packet` directory :
* `.terraform`
* `.tfvars`
* `.tfstate`
* `.tfstate.backup`
- `.terraform`
- `.tfvars`
- `.tfstate`
- `.tfstate.backup`
You can still add them manually if you want to.
@ -128,34 +134,38 @@ Before Terraform can operate on your cluster you need to install the required
plugins. This is accomplished as follows:
```ShellSession
$ cd inventory/$CLUSTER
$ terraform init ../../contrib/terraform/packet
cd inventory/$CLUSTER
terraform init ../../contrib/terraform/packet
```
This should finish fairly quickly telling you Terraform has successfully initialized and loaded necessary modules.
### Provisioning cluster
You can apply the Terraform configuration to your cluster with the following command
issued from your cluster's inventory directory (`inventory/$CLUSTER`):
```ShellSession
$ terraform apply -var-file=cluster.tfvars ../../contrib/terraform/packet
$ export ANSIBLE_HOST_KEY_CHECKING=False
$ ansible-playbook -i hosts ../../cluster.yml
terraform apply -var-file=cluster.tfvars ../../contrib/terraform/packet
export ANSIBLE_HOST_KEY_CHECKING=False
ansible-playbook -i hosts ../../cluster.yml
```
### Destroying cluster
You can destroy your new cluster with the following command issued from the cluster's inventory directory:
```ShellSession
$ terraform destroy -var-file=cluster.tfvars ../../contrib/terraform/packet
terraform destroy -var-file=cluster.tfvars ../../contrib/terraform/packet
```
If you've started the Ansible run, it may also be a good idea to do some manual cleanup:
* remove SSH keys from the destroyed cluster from your `~/.ssh/known_hosts` file
* clean up any temporary cache files: `rm /tmp/$CLUSTER-*`
- Remove SSH keys from the destroyed cluster from your `~/.ssh/known_hosts` file
- Clean up any temporary cache files: `rm /tmp/$CLUSTER-*`
### Debugging
You can enable debugging output from Terraform by setting `TF_LOG` to `DEBUG` before running the Terraform command.
## Ansible
@ -167,9 +177,9 @@ You can enable debugging output from Terraform by setting `TF_LOG` to `DEBUG` be
Ensure your local ssh-agent is running and your ssh key has been added. This
step is required by the terraform provisioner:
```
$ eval $(ssh-agent -s)
$ ssh-add ~/.ssh/id_rsa
```ShellSession
eval $(ssh-agent -s)
ssh-add ~/.ssh/id_rsa
```
If you have deployed and destroyed a previous iteration of your cluster, you will need to clear out any stale keys from your SSH "known hosts" file ( `~/.ssh/known_hosts`).
@ -178,7 +188,7 @@ If you have deployed and destroyed a previous iteration of your cluster, you wil
Make sure you can connect to the hosts. Note that Flatcar Container Linux by Kinvolk will have a state `FAILED` due to Python not being present. This is okay, because Python will be installed during bootstrapping, so long as the hosts are not `UNREACHABLE`.
```
```ShellSession
$ ansible -i inventory/$CLUSTER/hosts -m ping all
example-k8s_node-1 | SUCCESS => {
"changed": false,
@ -198,8 +208,8 @@ If it fails try to connect manually via SSH. It could be something as simple as
### Deploy Kubernetes
```
$ ansible-playbook --become -i inventory/$CLUSTER/hosts cluster.yml
```ShellSession
ansible-playbook --become -i inventory/$CLUSTER/hosts cluster.yml
```
This will take some time as there are many tasks to run.
@ -208,20 +218,22 @@ This will take some time as there are many tasks to run.
### Set up kubectl
* [Install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) on the localhost.
- [Install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) on the localhost.
- Verify that Kubectl runs correctly
* Verify that Kubectl runs correctly
```
```ShellSession
kubectl version
```
* Verify that the Kubernetes configuration file has been copied over
```
- Verify that the Kubernetes configuration file has been copied over
```ShellSession
cat inventory/alpha/$CLUSTER/admin.conf
```
* Verify that all the nodes are running correctly.
```
- Verify that all the nodes are running correctly.
```ShellSession
kubectl version
kubectl --kubeconfig=inventory/$CLUSTER/artifacts/admin.conf get nodes
```