mirror of
https://github.com/kennetek/gridfinity-rebuilt-openscad.git
synced 2024-12-22 14:53:25 +00:00
Merge pull request #175 from EmperorArthur/affine_hell
Use Affine Transformation Matrices For sweep_rounded
This commit is contained in:
commit
36345f3efb
2 changed files with 170 additions and 57 deletions
169
generic-helpers.scad
Normal file
169
generic-helpers.scad
Normal file
|
@ -0,0 +1,169 @@
|
|||
/**
|
||||
* @file generic-helpers.scad
|
||||
* @brief Generic Helper Functions. Not gridfinity specific.
|
||||
*/
|
||||
|
||||
function clp(x,a,b) = min(max(x,a),b);
|
||||
|
||||
module rounded_rectangle(length, width, height, rad) {
|
||||
linear_extrude(height)
|
||||
offset(rad)
|
||||
offset(-rad)
|
||||
square([length,width], center = true);
|
||||
}
|
||||
|
||||
module rounded_square(length, height, rad) {
|
||||
rounded_rectangle(length, length, height, rad);
|
||||
}
|
||||
|
||||
module copy_mirror(vec=[0,1,0]) {
|
||||
children();
|
||||
if (vec != [0,0,0])
|
||||
mirror(vec)
|
||||
children();
|
||||
}
|
||||
|
||||
module pattern_linear(x = 1, y = 1, sx = 0, sy = 0) {
|
||||
yy = sy <= 0 ? sx : sy;
|
||||
translate([-(x-1)*sx/2,-(y-1)*yy/2,0])
|
||||
for (i = [1:ceil(x)])
|
||||
for (j = [1:ceil(y)])
|
||||
translate([(i-1)*sx,(j-1)*yy,0])
|
||||
children();
|
||||
}
|
||||
|
||||
module pattern_circular(n=2) {
|
||||
for (i = [1:n])
|
||||
rotate(i*360/n)
|
||||
children();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Unity (no change) affine transformation matrix.
|
||||
* @details For use with multmatrix transforms.
|
||||
*/
|
||||
unity_matrix = [
|
||||
[1, 0, 0, 0],
|
||||
[0, 1, 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
];
|
||||
|
||||
/**
|
||||
* @brief Get the magnitude of a 2d or 3d vector
|
||||
* @param vector A 2d or 3d vectorm
|
||||
* @returns Magnitude of the vector.
|
||||
*/
|
||||
function vector_magnitude(vector) =
|
||||
sqrt(vector.x^2 + vector.y^2 + (len(vector) == 3 ? vector.z^2 : 0));
|
||||
|
||||
/**
|
||||
* @brief Convert a 2d or 3d vector into a unit vector
|
||||
* @returns The unit vector. Where total magnitude is 1.
|
||||
*/
|
||||
function vector_as_unit(vector) = vector / vector_magnitude(vector);
|
||||
|
||||
/**
|
||||
* @brief Convert a 2d vector into an angle.
|
||||
* @details Just a wrapper around atan2.
|
||||
* @param A 2d vectorm
|
||||
* @returns Angle of the vector.
|
||||
*/
|
||||
function atanv(vector) = atan2(vector.y, vector.x);
|
||||
|
||||
function _affine_rotate_x(angle_x) = [
|
||||
[1, 0, 0, 0],
|
||||
[0, cos(angle_x), -sin(angle_x), 0],
|
||||
[0, sin(angle_x), cos(angle_x), 0],
|
||||
[0, 0, 0, 1]
|
||||
];
|
||||
|
||||
function _affine_rotate_y(angle_y) = [
|
||||
[cos(angle_y), 0, sin(angle_y), 0],
|
||||
[0, 1, 0, 0],
|
||||
[-sin(angle_y), 0, cos(angle_y), 0],
|
||||
[0, 0, 0, 1]
|
||||
];
|
||||
|
||||
function _affine_rotate_z(angle_z) = [
|
||||
[cos(angle_z), -sin(angle_z), 0, 0],
|
||||
[sin(angle_z), cos(angle_z), 0, 0],
|
||||
[0, 0, 1, 0],
|
||||
[0, 0, 0, 1]
|
||||
];
|
||||
|
||||
|
||||
/**
|
||||
* @brief Affine transformation matrix equivalent of `rotate`
|
||||
* @param angle_vector @see `rotate`
|
||||
* @details Equivalent to `rotate([0, angle, 0])`
|
||||
* @returns An affine transformation matrix for use with `multmatrix()`
|
||||
*/
|
||||
function affine_rotate(angle_vector) =
|
||||
_affine_rotate_z(angle_vector.z) * _affine_rotate_y(angle_vector.y) * _affine_rotate_x(angle_vector.x);
|
||||
|
||||
/**
|
||||
* @brief Affine transformation matrix equivalent of `translate`
|
||||
* @param vector @see `translate`
|
||||
* @returns An affine transformation matrix for use with `multmatrix()`
|
||||
*/
|
||||
function affine_translate(vector) = [
|
||||
[1, 0, 0, vector.x],
|
||||
[0, 1, 0, vector.y],
|
||||
[0, 0, 1, vector.z],
|
||||
[0, 0, 0, 1]
|
||||
];
|
||||
|
||||
/**
|
||||
* @brief Create a rectangle with rounded corners by sweeping a 2d object along a path.
|
||||
* Centered on origin.
|
||||
*/
|
||||
module sweep_rounded(width=10, length=10) {
|
||||
half_width = width/2;
|
||||
half_length = length/2;
|
||||
path_points = [
|
||||
[-half_width, half_length], //Start
|
||||
[half_width, half_length], // Over
|
||||
[half_width, -half_length], //Down
|
||||
[-half_width, -half_length], // Back over
|
||||
[-half_width, half_length] // Up to start
|
||||
];
|
||||
path_vectors = [
|
||||
path_points[1] - path_points[0],
|
||||
path_points[2] - path_points[1],
|
||||
path_points[3] - path_points[2],
|
||||
path_points[4] - path_points[3],
|
||||
];
|
||||
// These contain the translations, but not the rotations
|
||||
// OpenSCAD requires this hacky for loop to get accumulate to work!
|
||||
first_translation = affine_translate([path_points[0].y, 0,path_points[0].x]);
|
||||
affine_translations = concat([first_translation], [
|
||||
for (i = 0, a = first_translation;
|
||||
i < len(path_vectors);
|
||||
a=a * affine_translate([path_vectors[i].y, 0, path_vectors[i].x]), i=i+1)
|
||||
a * affine_translate([path_vectors[i].y, 0, path_vectors[i].x])
|
||||
]);
|
||||
|
||||
// Bring extrusion to the xy plane
|
||||
affine_matrix = affine_rotate([90, 0, 90]);
|
||||
|
||||
walls = [
|
||||
for (i = [0 : len(path_vectors) - 1])
|
||||
affine_matrix * affine_translations[i]
|
||||
* affine_rotate([0, atanv(path_vectors[i]), 0])
|
||||
];
|
||||
|
||||
union()
|
||||
{
|
||||
for (i = [0 : len(walls) - 1]){
|
||||
multmatrix(walls[i])
|
||||
linear_extrude(vector_magnitude(path_vectors[i]))
|
||||
children();
|
||||
|
||||
// Rounded Corners
|
||||
multmatrix(walls[i] * affine_rotate([-90, 0, 0]))
|
||||
rotate_extrude(angle = 90, convexity = 4)
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
|
@ -5,6 +5,7 @@
|
|||
*/
|
||||
|
||||
include <standard.scad>
|
||||
use <generic-helpers.scad>
|
||||
|
||||
// ===== User Modules ===== //
|
||||
|
||||
|
@ -623,60 +624,3 @@ module profile_cutter_tab(h, tab, ang) {
|
|||
polygon([[0,h],[tab,h],[0,h-tab*tan(ang)]]);
|
||||
|
||||
}
|
||||
|
||||
// ==== Utilities =====
|
||||
|
||||
function clp(x,a,b) = min(max(x,a),b);
|
||||
|
||||
module rounded_rectangle(length, width, height, rad) {
|
||||
linear_extrude(height)
|
||||
offset(rad)
|
||||
offset(-rad)
|
||||
square([length,width], center = true);
|
||||
}
|
||||
|
||||
module rounded_square(length, height, rad) {
|
||||
rounded_rectangle(length, length, height, rad);
|
||||
}
|
||||
|
||||
module copy_mirror(vec=[0,1,0]) {
|
||||
children();
|
||||
if (vec != [0,0,0])
|
||||
mirror(vec)
|
||||
children();
|
||||
}
|
||||
|
||||
module pattern_linear(x = 1, y = 1, sx = 0, sy = 0) {
|
||||
yy = sy <= 0 ? sx : sy;
|
||||
translate([-(x-1)*sx/2,-(y-1)*yy/2,0])
|
||||
for (i = [1:ceil(x)])
|
||||
for (j = [1:ceil(y)])
|
||||
translate([(i-1)*sx,(j-1)*yy,0])
|
||||
children();
|
||||
}
|
||||
|
||||
module pattern_circular(n=2) {
|
||||
for (i = [1:n])
|
||||
rotate(i*360/n)
|
||||
children();
|
||||
}
|
||||
|
||||
module sweep_rounded(w=10, h=10) {
|
||||
union() pattern_circular(2) {
|
||||
copy_mirror([1,0,0])
|
||||
translate([w/2,h/2,0])
|
||||
rotate_extrude(angle = 90, convexity = 4)
|
||||
children();
|
||||
|
||||
translate([w/2,0,0])
|
||||
rotate([90,0,0])
|
||||
linear_extrude(height = h, center = true)
|
||||
children();
|
||||
|
||||
rotate([0,0,90])
|
||||
translate([h/2,0,0])
|
||||
rotate([90,0,0])
|
||||
linear_extrude(height = w, center = true)
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue