documentation update

This commit is contained in:
Kenneth 2022-11-17 12:58:46 -07:00
parent d02bcd1bfe
commit ac70740163
7 changed files with 47 additions and 146 deletions

3
.gitignore vendored
View File

@ -3,3 +3,6 @@ ignore/
gridfinity-rebuilt.json
stl/
batch/
docs/
site/
mkdocs.yml

118
README.md
View File

@ -11,6 +11,8 @@ A ground-up port (with a few extra features) of the stock [gridfinity](https://w
[<img src="./images/holes_dimension.gif" width="320">]()
[<img src="./images/custom_dimension.gif" width="320">]()
Full documentation can be found at the project's [website](https://kennetek.github.io/gridfinity-rebuilt-openscad/).
## Features
- any size of bin (width/length/height)
- height by units, internal depth, or overall size
@ -33,122 +35,6 @@ The printable holes allow your slicer to bridge the gap inside the countersunk m
## Recommendations
For best results, use a version of OpenSCAD with the fast-csg feature. As of writing, this feature is only implemented in the [development snapshots](https://openscad.org/downloads.html). To enable the feature, go to Edit > Preferences > Features > fast-csg. On my computer, this sped up rendering from 10 minutes down to a couple of seconds, even for comically large bins.
## Modules
Run these functions inside the *Commands* section of *gridfinity-rebuilt-bins.scad*.
### `gridfinityInit(gridx, gridy, height, height_internal, length)`
Initializes the top part of the bin (walls and solid section). All bins have to use this module, and have the compartments cut out from it.
Parameter | Range | Description
--- | ----- | ---
`gridx` | {n>0\|n∈R} | number of bases along the x-axis
`gridy` | {n>0\|n∈R} | number of bases along the y-axis
`height` | {n>0\|n∈R} | height of the bin, in millimeters (but not exactly). See the `height()` function for more info.
`height_internal` | {n>0\|n∈R} | height of the internal block. Can be lower than bin height to save filament on custom bins. default of 0 means use the calculated height.
`length` | {n>0\|n∈R} | length of one unit of the base. default: 42 (The Answer to the Ultimate Question of Life, the Universe, and Everything.)
```
// Example: generate a 3x3x6 bin with a 42mm unit size
gridfinityInit(3, 3, height(6), 0, 42) {
cutEqual(n_divx = 3, n_divy = 3, style_tab = 0, enable_scoop = true);
}
```
### `height(gridz, gridz_define, enable_lip, enable_zsnap)`
Calculates the proper height for bins.
Parameter | Range | Description
--- | ----- | ---
`gridz` | {n>0\|n∈R} | bin height. See bin height information and "gridz_define" below.
`gridz_define` | {n>0\|n∈R} | determine what the variable "gridz" applies to based on your use case. default: 0. <br> • (0) gridz is the height of bins in units of 7mm increments - Zack's method <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters
`enable_lip` | boolean | if you are not stacking the bin, you can disable the top lip to save space. default: true
`enable_zsnap` | boolean | automatically snap the bin size to the nearest 7mm increment. default: true
```
// Example: height for a 6 unit high bin
height(6);
// Example: height for a bin that can fit (at maximum) a 30mm high object inside
height(30, 1, true, false);
```
### `gridfinityBase(gridx, gridy, length, div_base_x, div_base_y, style_hole)`
Generates the bases for bins. Has various different hole styles, and can be subdivided.
Parameter | Range | Description
--- | ----- | ---
`gridx` | {n>0\|n∈R} | number of bases along the x-axis
`gridy` | {n>0\|n∈R} | number of bases along the y-axis
`length` | {n>0\|n∈R} | length of one unit of the base. default: 42
`div_base_x` | {n>=0\|n∈Z} | number of divisions per 1 unit of base along the X axis. (default 1, only use integers. 0 means automatically guess the division)
`div_base_y` | {n>=0\|n∈Z} | number of divisions per 1 unit of base along the Y axis. (default 1, only use integers. 0 means automatically guess the division)
`style_hole` | {0, 1, 2, 3} | the style of holes in the bases <br> • (0) No holes <br> • (1) Magnet holes only <br> • (2) Magnet and screw holes - no printable slit <br> • (3) Magnet and screw holes - with printable slit
```
// Example: generate a 3x3 base with a 42mm unit size and clean magnet holes
gridfinityBase(3, 3, 42, 0, 0, 1);
```
### `cutEqual(n_divx, n_divy, style_tab, enable_scoop)`
Generates the "traditional" bin cutters. It is a utility function that creates evenly distributed compartments.
Parameter | Range | Description
--- | ----- | ---
`n_divx` | {n>0\|n∈Z} | number of compartments along X
`n_divy` | {n>0\|n∈Z} | number of compartments along Y
`style_tab` | {0,1,2,3,4,5} | how the tabs for labels are generated. <br> • (0) Full tabs across the entire compartment <br> • (1) automatic tabs, meaning left aligned tabs on the left edge, right aligned tabs on right edge, center tabs otherwise <br> • (2) left aligned tabs <br> • (3) center aligned tabs <br> • (4) right aligned tabs <br> • (5) no tabs
`enable_scoop` | boolean | toggles the scoopy bit on the bottom edge that allows easy removal of items
```
// Example: this generates 9 compartments in a 3x3 grid, and all compartments have a full tab and a scoop
gridfinityInit(3, 3, height(6), 0, 42) {
cutEqual(n_divx = 3, n_divy = 3, style_tab = 0, enable_scoop = true);
}
```
### `cut(x, y, w, h, t, s)`
Cuts a single compartment into the bin at the provided location with the provided attributes. The coordinate system for compartments originates (0,0) at the bottom left corner of the bin, where 1 unit is the length of 1 base. Positive X and positive Y are in the same direction as the global coordinate system.
Parameter | Range | Description
--- | ----- | ---
`x` | {n>=0\|n∈R} | X coordinate of the compartment (position of left edge of compartment)
`y` | {n>=0\|n∈R} | Y coordinate of the compartment (position of bottom edge of compartment)
`w` | {n>0\|n∈R} | Width of the compartment, in base units (1 unit = 1 `length`)
`h` | {n>0\|n∈R} | Height of the compartment, in base units (1 unit = 1 `length`)
`t` | {0,1,2,3,4,5} | how the tabs for labels are generated for this specfic compartment. <br> • (0) Full tabs across the entire compartment <br> • (1) automatic tabs, meaning left aligned tabs on the left edge, right aligned tabs on right edge, center tabs otherwise <br> • (2) left aligned tabs <br> • (3) center aligned tabs <br> • (4) right aligned tabs <br> • (5) no tabs
`s` | boolean | toggles the scoopy bit on the bottom edge that allows easy removal of items, for this specific compartment
```
// Example:
// this cuts two compartments that are both 1 wide and 2 high.
// One is on the bottom left, and the other is at the top right.
gridfinityInit(3, 3, height(6), 0, 42) {
cut(0, 0, 1, 2, 0, true);
cut(2, 1, 1, 2, 0, true);
}
```
### `cut_move(x, y, w, h)`
Moves all of its children from the global origin to the center of the area that a compartment would normally fill, and uses them to cut from the bin. This allows you to easily make custom cutouts in the bin.
Parameter | Range | Description
--- | ----- | ---
`x` | {n>=0\|n∈R} | X coordinate of the area (position of left edge)
`y` | {n>=0\|n∈R} | Y coordinate of the area (position of bottom edge)
`w` | {n>0\|n∈R} | Width of the area, in base units (1 unit = 1 `length`)
`h` | {n>0\|n∈R} | Height of the area, in base units (1 unit = 1 `length`)
```
// Example:
// cuts a cylindrical hole of radius 5
// hole center is located 1/2 units from the right edge of the bin, and 1 unit from the top
gridfinityInit(3, 3, height(6), 0, 42) {
cut_move(x=2, y=1, w=1, h=2) {
cylinder(r=5, h=100, center=true);
}
}
```
More complex examples of all modules can be found in the scripts.
## Enjoy!
[<img src="./images/spin.gif" width="160">]()

View File

@ -1,6 +1,6 @@
include <gridfinity-rebuilt-utility.scad>
// ===== Info ===== //
// ===== INFORMATION ===== //
/*
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
@ -8,6 +8,8 @@ https://github.com/kennetek/gridfinity-rebuilt-openscad
*/
// ===== PARAMETERS ===== //
/* [Setup Parameters] */
$fa = 8;
$fs = 0.25;
@ -38,14 +40,14 @@ enable_magnet = true;
style_hole = 2; // [0:none, 1:contersink, 2:counterbore]
// ===== Commands ===== //
// ===== IMPLEMENTATION ===== //
color("tomato")
gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole);
// ===== Construction ===== //
// ===== CONSTRUCTION ===== //
module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh) {
@ -85,7 +87,7 @@ module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh) {
}
}
module cutter_weight(){
module cutter_weight() {
union() {
linear_extrude(bp_cut_depth*2,center=true)
square(bp_cut_size, center=true);

View File

@ -1,6 +1,6 @@
include <gridfinity-rebuilt-utility.scad>
// ===== Info ===== //
// ===== INFORMATION ===== //
/*
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
the magnet holes can have an extra cut in them to make it easier to print without supports
@ -21,6 +21,8 @@ https://github.com/kennetek/gridfinity-rebuilt-openscad
*/
// ===== PARAMETERS ===== //
/* [Setup Parameters] */
$fa = 8;
$fs = 0.25;
@ -67,7 +69,7 @@ div_base_y = 0;
// ===== Commands ===== //
// ===== IMPLEMENTATION ===== //
color("tomato") {
gridfinityInit(gridx, gridy, height(gridz, gridz_define, enable_lip, enable_zsnap), height_internal, length) {
@ -79,7 +81,7 @@ gridfinityBase(gridx, gridy, length, div_base_x, div_base_y, style_hole);
}
// ===== Examples =====
// ===== EXAMPLES ===== //
// 3x3 even spaced grid
/*

View File

@ -1,5 +1,15 @@
include <gridfinity-rebuilt-utility.scad>
// ===== INFORMATION ===== //
/*
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
https://github.com/kennetek/gridfinity-rebuilt-openscad
*/
// ===== PARAMETERS ===== //
/* [Setup Parameters] */
$fa = 8;
$fs = 0.25;
@ -40,13 +50,15 @@ div_base_x = 0;
div_base_y = 0;
// ===== IMPLEMENTATION ===== //
// Input all the cutter types in here
module cutterInput() {
cutEqual(n_divx = divx, n_divy = divy, style_tab = style_tab, enable_scoop = false);
}
// Does the necessary operations to get the base geometry
// ===== CONSTRUCTION ===== //
color("tomato")
difference() {
union() {

View File

@ -1,4 +1,14 @@
include <../gridfinity-rebuilt-utility.scad>
include <gridfinity-rebuilt-utility.scad>
// ===== INFORMATION ===== //
/*
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
https://github.com/kennetek/gridfinity-rebuilt-openscad
*/
// ===== PARAMETERS ===== //
/* [Special Variables] */
$fa = 8;
@ -7,18 +17,7 @@ $fs = 0.25;
/* [Bin or Base] */
type = 0; // [0:bin, 1:base]
// ===== COMMANDS ===== //
color("tomato")
if (type != 0) gridfinityBaseVase(); // Generate a single base
else gridfinityVase(); // Generate the bin
// ==================== //
/* [Printer Settings] */
// printer nozzle size
nozzle = 0.6;
// slicer layer size
@ -27,7 +26,6 @@ layer = 0.35;
bottom_layer = 3;
/* [General Settings] */
// number of bases along x-axis
gridx = 2;
// number of bases along y-axis
@ -55,26 +53,26 @@ enable_inset = true;
// "pinches" the top lip of the bin, for added strength
enable_pinch = true;
/* [Styles] */
// determine what the variable "gridz" applies to based on your use case
gridz_define = 0; // [0:gridz is the height of bins in units of 7mm increments - Zack's method,1:gridz is the internal height in millimeters, 2:gridz is the overall external height of the bin in millimeters]
// how tabs are implemented
style_tab = 0; // [0:continuous, 1:broken, 2:auto, 3:right, 4:center, 5:left, 6:none]
// where to put X cutouts for attaching bases
style_base = 0; // [0:all, 1:corners, 2:edges, 3:auto, 4:none]
// tab angle
a_tab = 40;
a_tab = 40;
// ===== Include ===== //
// ===== IMPLEMENTATION ===== //
color("tomato")
if (type != 0) gridfinityBaseVase(); // Generate a single base
else gridfinityVase(); // Generate the bin
// ===== Constants ===== //
// ===== CONSTRUCTION ===== //
d_bottom = layer*bottom_layer;
x_l = length/2;
@ -94,7 +92,6 @@ spacing = (gridx*length-0.5)/(n_divx);
shift = n_st==3?-1:n_st==5?1:0;
shiftauto = function (a,b) n_st!=2?0:a==1?-1:a==b?1:0;
xAll = function (a,b) true;
xCorner = function(a,b) (a==1||a==gridx)&&(b==1||b==gridy);
xEdge = function(a,b) (a==1)||(a==gridx)||(b==1)||(b==gridy);
@ -102,7 +99,6 @@ xAuto = function(a,b) xCorner(a,b) || (a%2==1 && b%2 == 1);
xNone = function(a,b) false;
xFunc = [xAll, xCorner, xEdge, xAuto, xNone];
// ===== Modules ===== //
module gridfinityVase() {
$dh = d_height;