Allow multiple levels for supportless holes

Helps prevent / minimize issues with filament droop.
Expecially when Cura decides to start the top of hole in mid-air.

Visible Changes:
* Supportless screw holes have a 3rd layer.
* Supportless magnet holes without screw holes have a 3rd layer.

Backend Changes:
* Switched to a completely different generation strategy.
  * Previous strategy directly produced negative.
  * New strategy is to make a positive,
    then use that to create a negative.
* Algorithm for multiple layers is not perfect,
  but works within tollerances set.
This commit is contained in:
Arthur Moore 2024-04-27 00:18:18 -04:00
parent 1a50807295
commit ca28aed898
2 changed files with 52 additions and 37 deletions

View file

@ -5,6 +5,8 @@
function clp(x,a,b) = min(max(x,a),b);
function is_even(number) = (number%2)==0;
module rounded_rectangle(length, width, height, rad) {
linear_extrude(height)
offset(rad)

View file

@ -50,7 +50,6 @@ module ribbed_circle(outer_radius, inner_radius, ribs) {
polygon(wrapped_circle);
}
/**
* @brief A cylinder with crush ribs to give a tighter press fit.
* @details To be used as the negative for a hole.
@ -70,52 +69,64 @@ module ribbed_cylinder(outer_radius, inner_radius, height, ribs) {
);
}
/**
* @brief Make a hole printable without suports.
* @see https://www.youtube.com/watch?v=W8FbHTcB05w
* @param inner_radius Radius of the inner hole.
* @param outer_radius Radius of the outer hole.
* @param outer_depth Depth of the magnet hole.
* @param outer_height Height of the outer hole.
* @param layers Number of layers to make printable.
* @details This is the negative designed to be cut out of the magnet hole.
* Use it with `difference()`.
* Special handling is done to support a single layer,
* and because the last layer (unless there is only one) has a different shape.
*/
module make_hole_printable(inner_radius, outer_radius, outer_depth) {
module make_hole_printable(inner_radius, outer_radius, outer_height, layers=2) {
assert(inner_radius > 0, "inner_radius must be positive");
assert(outer_radius > 0, "outer_radius must be positive");
assert(outer_depth > 2*LAYER_HEIGHT, str("outer_depth must be at least ", 2*LAYER_HEIGHT));
tollerance = 0.001; // To make sure the top layer is fully removed
assert(layers > 0);
translation_matrix = affine_translate([
-outer_radius,
inner_radius,
outer_depth - 2*LAYER_HEIGHT
]);
second_translation_matrix = translation_matrix * affine_translate([0, 0, LAYER_HEIGHT]);
tollerance = 0.01; // Ensure everything is fully removed.
height_adjustment = outer_height - (layers * LAYER_HEIGHT);
cube_dimensions = [
outer_radius*2,
outer_radius - inner_radius,
LAYER_HEIGHT + tollerance
// Needed, since the last layer should not be used for calculations,
// unless there is a single layer.
calculation_layers = max(layers-1, 1);
cube_height = LAYER_HEIGHT + 2*tollerance;
inner_diameter = 2*(inner_radius+tollerance);
outer_diameter = 2*(outer_radius+tollerance);
per_layer_difference = (outer_diameter-inner_diameter) / calculation_layers;
initial_matrix = affine_translate([0, 0, cube_height/2-tollerance + height_adjustment]);
// Produces data in the form [affine_matrix, [cube_dimensions]]
// If layers > 1, the last item produced has an invalid "affine_matrix.y", because it is beyond calculation_layers.
// That is handled in a special case to avoid doing a check every loop.
cutout_information = [
for(i=0; i <= layers; i=i+1)
[
initial_matrix * affine_translate([0, 0, (i-1)*LAYER_HEIGHT]) *
affine_rotate([0, 0, is_even(i) ? 90 : 0]),
[outer_diameter-per_layer_difference*(i-1),
outer_diameter-per_layer_difference*i,
cube_height]
]
];
union(){
union() {
multmatrix(translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 180]) * translation_matrix)
cube(cube_dimensions);
difference() {
translate([0, 0, layers*cube_height/2 + height_adjustment])
cube([outer_diameter+tollerance, outer_diameter+tollerance, layers*cube_height], center = true);
for (i = [1 : calculation_layers]){
data = cutout_information[i];
multmatrix(data[0])
cube(data[1], center = true);
}
// 2nd level
union() {
multmatrix(second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 90]) * second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 180]) * second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 270]) * second_translation_matrix)
cube(cube_dimensions);
if(layers > 1) {
data = cutout_information[len(cutout_information)-1];
multmatrix(data[0])
cube([data[1].x, data[1].x, data[1].z], center = true);
}
}
}
@ -209,10 +220,10 @@ module block_base_hole(hole_options, o=0) {
magnet_radius = MAGNET_HOLE_RADIUS - (o/2);
magnet_inner_radius = MAGNET_HOLE_CRUSH_RIB_INNER_RADIUS - (o/2);
screw_depth = h_base-o;
// If using supportless / printable mode, need to add two additional layers, so they can be removed later.
supportless_additional_depth = 2* LAYER_HEIGHT;
// If using supportless / printable mode, need to add additional layers, so they can be removed later.
supportless_additional_layers = screw_hole ? 2 : 3;
magnet_depth = MAGNET_HOLE_DEPTH - o +
(supportless ? supportless_additional_depth : 0);
(supportless ? supportless_additional_layers*LAYER_HEIGHT : 0);
union() {
if(refined_hole) {
@ -228,7 +239,8 @@ module block_base_hole(hole_options, o=0) {
}
if(supportless) {
make_hole_printable(screw_radius, magnet_radius, magnet_depth);
make_hole_printable(
screw_hole ? screw_radius : 1, magnet_radius, magnet_depth, supportless_additional_layers);
}
}
@ -242,7 +254,7 @@ module block_base_hole(hole_options, o=0) {
cylinder(h = screw_depth, r = screw_radius);
if(supportless) {
rotate([0, 0, 90])
make_hole_printable(screw_radius/2, screw_radius, screw_depth);
make_hole_printable(0.5, screw_radius, screw_depth, 3);
}
}
}
@ -259,3 +271,4 @@ module block_base_hole(hole_options, o=0) {
// crush_ribs=true,
// chamfer=true
//));
//make_hole_printable(1, 3, 0);