Merge pull request #128 from smkent/pre-commit

Remove trailing whitespace, add pre-commit and CI workflow to check whitespace
This commit is contained in:
Ruud 2024-01-06 17:46:32 +01:00 committed by GitHub
commit e7478a7dc9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
17 changed files with 321 additions and 282 deletions

34
.github/workflows/ci.yml vendored Normal file
View file

@ -0,0 +1,34 @@
name: Test
on:
pull_request:
push:
branches:
- main
workflow_dispatch:
jobs:
Test:
name: pre-commit
runs-on: ubuntu-latest
steps:
- name: 💾 Check out repository
uses: actions/checkout@v3
- name: 🪝 Cache pre-commit hooks
uses: actions/cache@v3
with:
path: ~/.cache/pre-commit
key: "pre-commit-${{ runner.os }}-${{ hashFiles('.pre-commit-config.yaml')
}}"
- name: ✨ Install pre-commit
shell: bash
run: python3 -m pip install pre-commit
- name: 🔥 Test
run: pre-commit run --show-diff-on-failure --all-files
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: false

2
.gitignore vendored
View file

@ -5,4 +5,4 @@ gridfinity-rebuilt-bins.json
stl/ stl/
batch/ batch/
site/ site/
*.json *.json

7
.pre-commit-config.yaml Normal file
View file

@ -0,0 +1,7 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
hooks:
- id: check-merge-conflict
- id: end-of-file-fixer
- id: trailing-whitespace

View file

@ -27,7 +27,7 @@ MIT License
Copyright (c) 2023 Zachary Freedman and Voidstar Lab LLC Copyright (c) 2023 Zachary Freedman and Voidstar Lab LLC
Permission is hereby granted, free of charge, to any person obtaining a copy Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

View file

@ -1,8 +1,8 @@
# Gridfinity Rebuilt in OpenSCAD # Gridfinity Rebuilt in OpenSCAD
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
A ground-up port (with a few extra features) of the stock [gridfinity](https://www.youtube.com/watch?v=ra_9zU-mnl8) bins in OpenSCAD. Open to feedback, because I could not feasibly test all combinations of bins. I tried my best to exactly match the original gridfinity dimensions, but some of the geometry is slightly incorrect (mainly fillets). However, I think they are negligible differences, and will not appear in the printed model. A ground-up port (with a few extra features) of the stock [gridfinity](https://www.youtube.com/watch?v=ra_9zU-mnl8) bins in OpenSCAD. Open to feedback, because I could not feasibly test all combinations of bins. I tried my best to exactly match the original gridfinity dimensions, but some of the geometry is slightly incorrect (mainly fillets). However, I think they are negligible differences, and will not appear in the printed model.
Full documentation can be found at the project's [website](https://kennetek.github.io/gridfinity-rebuilt-openscad/). Full documentation can be found at the project's [website](https://kennetek.github.io/gridfinity-rebuilt-openscad/).
@ -35,7 +35,7 @@ The printable holes allow your slicer to bridge the gap inside the countersunk m
[<img src="./images/slicer_holes_top.png" height="200">]() [<img src="./images/slicer_holes_top.png" height="200">]()
## Recommendations ## Recommendations
For best results, use a version of OpenSCAD with the fast-csg feature. As of writing, this feature is only implemented in the [development snapshots](https://openscad.org/downloads.html). To enable the feature, go to Edit > Preferences > Features > fast-csg. On my computer, this sped up rendering from 10 minutes down to a couple of seconds, even for comically large bins. For best results, use a version of OpenSCAD with the fast-csg feature. As of writing, this feature is only implemented in the [development snapshots](https://openscad.org/downloads.html). To enable the feature, go to Edit > Preferences > Features > fast-csg. On my computer, this sped up rendering from 10 minutes down to a couple of seconds, even for comically large bins.
## Enjoy! ## Enjoy!
@ -43,7 +43,7 @@ For best results, use a version of OpenSCAD with the fast-csg feature. As of wri
[Gridfinity](https://www.youtube.com/watch?v=ra_9zU-mnl8) by [Zack Freedman](https://www.youtube.com/c/ZackFreedman/about) [Gridfinity](https://www.youtube.com/watch?v=ra_9zU-mnl8) by [Zack Freedman](https://www.youtube.com/c/ZackFreedman/about)
This work is licensed under the same license as Gridfinity, being a This work is licensed under the same license as Gridfinity, being a
[MIT License](https://opensource.org/licenses/MIT). [MIT License](https://opensource.org/licenses/MIT).
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)

View file

@ -15,7 +15,7 @@ distancex | { n>0 \| n∈R } | minimum length of baseplate along x <br>alternati
distancey | { n>0 \| n∈R } | minimum length of baseplate along y <br>alternatively, how large is the drawer along y <br>(leave zero to ignore) distancey | { n>0 \| n∈R } | minimum length of baseplate along y <br>alternatively, how large is the drawer along y <br>(leave zero to ignore)
fitx | { -1<=n<=1 \| n∈R } | alignment factor for extra space along x axis fitx | { -1<=n<=1 \| n∈R } | alignment factor for extra space along x axis
fity | { -1<=n<=1 \| n∈R } | alignment factor for extra space along y axis fity | { -1<=n<=1 \| n∈R } | alignment factor for extra space along y axis
style_plate | { 0, 1, 2 } | the style of baseplate <br> • (0) thin (minimum material, only outline) <br> • (1) weighted (thick with space for tire iron) <br> • (2) skeletonized (thick, center hollowed) style_plate | { 0, 1, 2 } | the style of baseplate <br> • (0) thin (minimum material, only outline) <br> • (1) weighted (thick with space for tire iron) <br> • (2) skeletonized (thick, center hollowed)
enable_magnet | boolean | toggle hole for magnet on top enable_magnet | boolean | toggle hole for magnet on top
style_hole | { 0, 1, 2 } | the style of holes underneath the baseplate, if applicable <br> • (0) none <br> • (1) countersink <br> • (2) counterbore style_hole | { 0, 1, 2 } | the style of holes underneath the baseplate, if applicable <br> • (0) none <br> • (1) countersink <br> • (2) counterbore
@ -23,7 +23,7 @@ style_hole | { 0, 1, 2 } | the style of holes underneath the baseplate, if appli
### gridfinityBaseplate ### gridfinityBaseplate
Generates a baseplate to use with gridfinity bins. Generates a baseplate to use with gridfinity bins.
** `gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole)` ** ** `gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole)` **
@ -36,6 +36,6 @@ distancex | { n>0 \| n∈R } | minimum length of baseplate along x <br>alternati
distancey | { n>0 \| n∈R } | minimum length of baseplate along y <br>alternatively, how large is the drawer along y <br>(leave zero to ignore) distancey | { n>0 \| n∈R } | minimum length of baseplate along y <br>alternatively, how large is the drawer along y <br>(leave zero to ignore)
fitx | { -1<=n<=1 \| n∈R } | alignment factor for extra space along x axis fitx | { -1<=n<=1 \| n∈R } | alignment factor for extra space along x axis
fity | { -1<=n<=1 \| n∈R } | alignment factor for extra space along y axis fity | { -1<=n<=1 \| n∈R } | alignment factor for extra space along y axis
style_plate | { 0, 1, 2 } | the style of baseplate <br> • (0) thin (minimum material, only outline) <br> • (1) weighted (thick with space for tire iron) <br> • (2) skeletonized (thick, center hollowed) style_plate | { 0, 1, 2 } | the style of baseplate <br> • (0) thin (minimum material, only outline) <br> • (1) weighted (thick with space for tire iron) <br> • (2) skeletonized (thick, center hollowed)
enable_magnet | boolean | toggle hole for magnet on top enable_magnet | boolean | toggle hole for magnet on top
style_hole | { 0, 1, 2 } | the style of holes underneath the baseplate, if applicable <br> • (0) none <br> • (1) countersink <br> • (2) counterbore style_hole | { 0, 1, 2 } | the style of holes underneath the baseplate, if applicable <br> • (0) none <br> • (1) countersink <br> • (2) counterbore

View file

@ -1,6 +1,6 @@
# gridfinity-rebuilt-bins # gridfinity-rebuilt-bins
Generates stock bins, with a great number of variations. Generates stock bins, with a great number of variations.
![Bin](images/custom_dimension.gif) ![Bin](images/custom_dimension.gif)
@ -8,13 +8,13 @@ Generates stock bins, with a great number of variations.
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below. gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below.
length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.) length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.)
divx | { n>0 \| n∈Z } | number of compartments along X divx | { n>0 \| n∈Z } | number of compartments along X
divy | { n>0 \| n∈Z } | number of compartments along Y divy | { n>0 \| n∈Z } | number of compartments along Y
scoop | n>0 \| n∈R | controls the fillet on the bottom of the compartment for easy <br> item removal. 0 is disabled, 1 is full, any other real number will <br> scale from full. scoop | n>0 \| n∈R | controls the fillet on the bottom of the compartment for easy <br> item removal. 0 is disabled, 1 is full, any other real number will <br> scale from full.
enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true
style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height
gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters
@ -32,14 +32,14 @@ div_base_y | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along th
### gridfinityInit ### gridfinityInit
Initializes the top part of the bin (walls and solid section). All bins have to use this module, and have the compartments cut out from it. Initializes the top part of the bin (walls and solid section). All bins have to use this module, and have the compartments cut out from it.
** `gridfinityInit (gridx, gridy, height, height_internal, length)` ** ** `gridfinityInit (gridx, gridy, height, height_internal, length)` **
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
height | { n>0 \| n∈R } | height of the bin, in millimeters (but not exactly). <br> See the `height()` function for more info. height | { n>0 \| n∈R } | height of the bin, in millimeters (but not exactly). <br> See the `height()` function for more info.
height_internal | { n>0 \| n∈R } | height of the internal block. <br> Can be lower than bin height to save filament on custom bins. <br> default of 0 means use the calculated height. height_internal | { n>0 \| n∈R } | height of the internal block. <br> Can be lower than bin height to save filament on custom bins. <br> default of 0 means use the calculated height.
length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.) length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.)
@ -55,13 +55,13 @@ gridfinityInit(3, 3, height(6), 0, 42) {
### height ### height
Calculates the proper height for bins. Calculates the proper height for bins.
** `height (gridz, gridz_define, style_lip, enable_zsnap)` ** ** `height (gridz, gridz_define, style_lip, enable_zsnap)` **
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below. gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below.
gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters
style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height
enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true
@ -71,12 +71,12 @@ enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm incr
height(6); height(6);
// Example: height for a bin that can fit (at maximum) a 30mm high object inside // Example: height for a bin that can fit (at maximum) a 30mm high object inside
height(30, 1, 0, false); height(30, 1, 0, false);
``` ```
--- ---
### gridfinityBase ### gridfinityBase
Generates the bases for bins. Has various different hole styles, and can be subdivided. Generates the bases for bins. Has various different hole styles, and can be subdivided.
@ -84,8 +84,8 @@ Generates the bases for bins. Has various different hole styles, and can be subd
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
length | { n>0 \| n∈R } | length of one unit of the base. default: 42 length | { n>0 \| n∈R } | length of one unit of the base. default: 42
div_base_x | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along the X axis. <br>(default 1, only use integers. 0 means automatically guess the division) div_base_x | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along the X axis. <br>(default 1, only use integers. 0 means automatically guess the division)
div_base_y | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along the Y axis. <br>(default 1, only use integers. 0 means automatically guess the division) div_base_y | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along the Y axis. <br>(default 1, only use integers. 0 means automatically guess the division)
@ -100,7 +100,7 @@ gridfinityBase(3, 3, 42, 0, 0, 1);
### cutEqual ### cutEqual
Generates the "traditional" bin cutters. It is a utility function that creates evenly distributed compartments. Generates the "traditional" bin cutters. It is a utility function that creates evenly distributed compartments.
** `cutEqual (n_divx, n_divy, style_tab, scoop_weight)` ** ** `cutEqual (n_divx, n_divy, style_tab, scoop_weight)` **
@ -137,8 +137,8 @@ s | n>0 \| n∈R | controls the fillet on the bottom of the compartment for easy
``` ```
// Example: // Example:
// this cuts two compartments that are both 1 wide and 2 high. // this cuts two compartments that are both 1 wide and 2 high.
// One is on the bottom left, and the other is at the top right. // One is on the bottom left, and the other is at the top right.
gridfinityInit(3, 3, height(6), 0, 42) { gridfinityInit(3, 3, height(6), 0, 42) {
cut(0, 0, 1, 2, 0, 1); cut(0, 0, 1, 2, 0, 1);
cut(2, 1, 1, 2, 0, 1); cut(2, 1, 1, 2, 0, 1);
@ -169,4 +169,4 @@ gridfinityInit(3, 3, height(6), 0, 42) {
cylinder(r=5, h=100, center=true); cylinder(r=5, h=100, center=true);
} }
} }
``` ```

View file

@ -1,6 +1,6 @@
# gridfinity-rebuilt-constants # gridfinity-rebuilt-constants
This file contains dimensions that are critical to the constructiuon of the other models, but are not values that often need to be changed. Thus, they were outsourced to this file such that the rest of the files would retain parity. All values here have the same range, this is positive real numbers. Some can be zero, but that may result in strange or invalid geometry, This file contains dimensions that are critical to the constructiuon of the other models, but are not values that often need to be changed. Thus, they were outsourced to this file such that the rest of the files would retain parity. All values here have the same range, this is positive real numbers. Some can be zero, but that may result in strange or invalid geometry,
Parameter | Description Parameter | Description
--- | ------ --- | ------
@ -19,12 +19,12 @@ h_hole| magnet hole depth
h_slit| slit depth (printer layer height) h_slit| slit depth (printer layer height)
r_f1| top edge fillet radius r_f1| top edge fillet radius
r_f2 | internal fillet radius r_f2 | internal fillet radius
d_div | width of divider between compartments d_div | width of divider between compartments
d_wall| minimum wall thickness d_wall| minimum wall thickness
d_clear| tolerance fit factor d_clear| tolerance fit factor
d_tabh| height of tab (yaxis, measured from inner wall) d_tabh| height of tab (yaxis, measured from inner wall)
d_tabw| maximum width of tab d_tabw| maximum width of tab
a_tab| angle of tab a_tab| angle of tab
bp_h_bot| Baseplate bottom part height (part added with weigthed=true) bp_h_bot| Baseplate bottom part height (part added with weigthed=true)
bp_cut_size| Baseplate bottom cutout rectangle size bp_cut_size| Baseplate bottom cutout rectangle size
bp_cut_depth| Baseplate bottom cutout rectangle depth bp_cut_depth| Baseplate bottom cutout rectangle depth
@ -35,4 +35,4 @@ d_cs | countersink diameter for baseplate
r_skel| radius of cutout for skeletonized baseplate r_skel| radius of cutout for skeletonized baseplate
r_cb| baseplate counterbore radius r_cb| baseplate counterbore radius
h_cb| baseplate counterbore depth h_cb| baseplate counterbore depth
h_skel | minimum baseplate thickness (when skeletonized) h_skel | minimum baseplate thickness (when skeletonized)

View file

@ -1,14 +1,14 @@
## Introduction ## Introduction
Gridfinity rebuilt aims to remake the brilliant Gridfinity project from [Zack Freedman](https://www.youtube.com/c/ZackFreedman/about) in a more robust and open-source way than the original Fusion 360 files. Many major CAD suites struggle with making parametric models constructed from linear patterns, due to changing fillet edges and seams. Thus, a pure mathematical approach using OpenSCAD can allow a single solution for all possible bin variants. Gridfinity rebuilt aims to remake the brilliant Gridfinity project from [Zack Freedman](https://www.youtube.com/c/ZackFreedman/about) in a more robust and open-source way than the original Fusion 360 files. Many major CAD suites struggle with making parametric models constructed from linear patterns, due to changing fillet edges and seams. Thus, a pure mathematical approach using OpenSCAD can allow a single solution for all possible bin variants.
The [project](https://github.com/kennetek/gridfinity-rebuilt-openscad/) has expanded into more eccentric models that use modules from the original generator. This wiki aims to document these modules in great detail. The [project](https://github.com/kennetek/gridfinity-rebuilt-openscad/) has expanded into more eccentric models that use modules from the original generator. This wiki aims to document these modules in great detail.
Models are generated subtractively. First, the solid bin and bases are constructed, and then the compartments and holes are removed. This allows for internal fillets that nearly match the originals. However, they are not exactly perfect. There are some fillets that are too small and too difficult to be worth implementing, as most printers do not have a high enough resolution for it to matter. Models are generated subtractively. First, the solid bin and bases are constructed, and then the compartments and holes are removed. This allows for internal fillets that nearly match the originals. However, they are not exactly perfect. There are some fillets that are too small and too difficult to be worth implementing, as most printers do not have a high enough resolution for it to matter.
## Getting Started ## Getting Started
For best results, use a version of OpenSCAD with the fast-csg feature. As of writing, this feature is only implemented in the [development snapshots](https://openscad.org/downloads.html). To enable the feature, go to Edit > Preferences > Features > fast-csg. This can speed up rendering from 10 minutes down to a couple of seconds, even for comically large bins. It is not a requirement to use development versions of OpenSCAD. For best results, use a version of OpenSCAD with the fast-csg feature. As of writing, this feature is only implemented in the [development snapshots](https://openscad.org/downloads.html). To enable the feature, go to Edit > Preferences > Features > fast-csg. This can speed up rendering from 10 minutes down to a couple of seconds, even for comically large bins. It is not a requirement to use development versions of OpenSCAD.
Most files will come ready-to-run, so parameters can be changed using OpenSCAD's built-in customizer window, and the bins will automatically generate. However, all modules are packed up nicely, so any module can be imported into other files or have more custom modifications beyond tweaking the parameters. Most files will come ready-to-run, so parameters can be changed using OpenSCAD's built-in customizer window, and the bins will automatically generate. However, all modules are packed up nicely, so any module can be imported into other files or have more custom modifications beyond tweaking the parameters.
## Script Structure ## Script Structure
* Information (Imports / Script Details) * Information (Imports / Script Details)
@ -17,6 +17,6 @@ Most files will come ready-to-run, so parameters can be changed using OpenSCAD's
* Construction (Script-Specific Modules and Constants) * Construction (Script-Specific Modules and Constants)
* Examples * Examples
The two files which do not follow these conventions are `gridfinity-rebuilt-utility` and `gridfinity-rebuilt-constants`. These files are not meant to be exposed to the user, except for special requirements that the normal parameters cannot handle. Their respective wiki pages go into more depth. The two files which do not follow these conventions are `gridfinity-rebuilt-utility` and `gridfinity-rebuilt-constants`. These files are not meant to be exposed to the user, except for special requirements that the normal parameters cannot handle. Their respective wiki pages go into more depth.
**NOTE: This documentation is a work in progress, just like the rest of the repository, so parts may still be under construction.** **NOTE: This documentation is a work in progress, just like the rest of the repository, so parts may still be under construction.**

View file

@ -1,6 +1,6 @@
# gridfinity-rebuilt-lite # gridfinity-rebuilt-lite
Generates stock bins, but with a twist: the bases are hollow. This is unable to be implemented directly into `gridfinity-rebuilt-bins` due to its surprisingly complex construction. It couldn't be a toggle without causing the structure of the script to fundamentally change (and become more complex) so it was moved to a separate file. Notably, there are some parameters missing, as they are incompatible with the lite variation. Additionally, the complex geometry means rendering is fairly slow, and currently causes many CSG errors. Generates stock bins, but with a twist: the bases are hollow. This is unable to be implemented directly into `gridfinity-rebuilt-bins` due to its surprisingly complex construction. It couldn't be a toggle without causing the structure of the script to fundamentally change (and become more complex) so it was moved to a separate file. Notably, there are some parameters missing, as they are incompatible with the lite variation. Additionally, the complex geometry means rendering is fairly slow, and currently causes many CSG errors.
![Bin](images/lite.gif) ![Bin](images/lite.gif)
@ -8,9 +8,9 @@ Generates stock bins, but with a twist: the bases are hollow. This is unable to
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below. gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below.
length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.) length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of Life, <br>the Universe, and Everything.)
divx | { n>0 \| n∈Z } | number of compartments along X divx | { n>0 \| n∈Z } | number of compartments along X
divy | { n>0 \| n∈Z } | number of compartments along Y divy | { n>0 \| n∈Z } | number of compartments along Y
@ -30,15 +30,15 @@ div_base_y | { n>=0 \| n∈Z } | number of divisions per 1 unit of base along th
### gridfinityLite ### gridfinityLite
Wrapper function that calls [`gridfinityInit`](bins.md#gridfinityInit) and [`gridfinityBase`](bins.md#gridfinityBase) functions (hence the sheer quantity of parameters). Like [`gridfinityInit`](bins.md#gridfinityInit), it uses its children as cutters for the compartments. Wrapper function that calls [`gridfinityInit`](bins.md#gridfinityInit) and [`gridfinityBase`](bins.md#gridfinityBase) functions (hence the sheer quantity of parameters). Like [`gridfinityInit`](bins.md#gridfinityInit), it uses its children as cutters for the compartments.
**`gridfinityLite(gridx, gridy, gridz, gridz_define, enable_lip, enable_zsnap, length, div_base_x, div_base_y, style_hole)`** **`gridfinityLite(gridx, gridy, gridz, gridz_define, enable_lip, enable_zsnap, length, div_base_x, div_base_y, style_hole)`**
Parameter | Range | Description Parameter | Range | Description
--- | ----- | --- --- | ----- | ---
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below. gridz | { n>0 \| n∈R } | bin height. See bin height information and "gridz_define" below.
gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in millimeters <br> • (2) gridz is the overall external height of the bin in millimeters
style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height style_lip | {0, 1, 2} | if you are not stacking the bin, you can disable the top lip <br> to save space. <br> • (0) Regular lip <br> • (1) Subtract lip to save space <br> • (2) Disable lip while retaining height
enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true enable_zsnap | boolean | automatically snap the bin size to the nearest 7mm increment. <br> default: true
@ -52,4 +52,4 @@ style_hole | { 0, 1, 2, 3 } | the style of holes in the bases <br> • (0) N
gridfinityLite(gridx=3, gridy=3, gridz=6, gridz_define=0, enable_lip=true, enable_zsnap=false, length=42, div_base_x=0, div_base_y=0, style_hole=1) { gridfinityLite(gridx=3, gridy=3, gridz=6, gridz_define=0, enable_lip=true, enable_zsnap=false, length=42, div_base_x=0, div_base_y=0, style_hole=1) {
cutEqual(n_divx=2, n_divy=2, style_tab=1, enable_scoop = false); cutEqual(n_divx=2, n_divy=2, style_tab=1, enable_scoop = false);
} }
``` ```

View file

@ -1,7 +1,7 @@
# gridfinity-spiral-vase # gridfinity-spiral-vase
Some assembly required! Some assembly required!
Adaptation of Gridfinity bins to work with spiral vase mode, as to save filament and print time. A big drawback of using vase mode for Gridfinity bins was that they would be very flimsy, and would lack the features that make Gridfinity such a good organizational tool. The goal of this implementation was to maintain the design philosophy while working under the constraints of vase mode. Adaptation of Gridfinity bins to work with spiral vase mode, as to save filament and print time. A big drawback of using vase mode for Gridfinity bins was that they would be very flimsy, and would lack the features that make Gridfinity such a good organizational tool. The goal of this implementation was to maintain the design philosophy while working under the constraints of vase mode.
![Bin](images/vase_dividers.gif) ![Bin](images/vase_dividers.gif)
![Bin](images/vase_base.gif) ![Bin](images/vase_base.gif)
@ -9,19 +9,19 @@ Adaptation of Gridfinity bins to work with spiral vase mode, as to save filament
## Instructions ## Instructions
Normal Gridfinity is impossible to convert to vase mode due to the geometry of the bases, meaning most existing vase mode Gridfinity models are limited to 1x1 bins. How this script gets around the impossible is to use two separate pieces. **The bin and bases must be printed separately, and then glued together to form the final bin.** While this is slightly more work, there is an added bonus to this method, as for larger bins you may not need every single grid slot to have a base, you only really need them on the corners, or the edges, with some in the middle for support. Using less bases saves filament and print time. Normal Gridfinity is impossible to convert to vase mode due to the geometry of the bases, meaning most existing vase mode Gridfinity models are limited to 1x1 bins. How this script gets around the impossible is to use two separate pieces. **The bin and bases must be printed separately, and then glued together to form the final bin.** While this is slightly more work, there is an added bonus to this method, as for larger bins you may not need every single grid slot to have a base, you only really need them on the corners, or the edges, with some in the middle for support. Using less bases saves filament and print time.
All parameters are global. The customizer has descriptions for all parameters. It is **essential** that the section *Printer Settings* matches your preferred slicer's settings, otherwise the model will not slice correctly. Additionally, you have to turn on the spiral vase parameter in your slicer. If you do not know what vase mode is, [this](https://www.youtube.com/watch?v=HZSFoFYpBaA) is a helpful video. All parameters are global. The customizer has descriptions for all parameters. It is **essential** that the section *Printer Settings* matches your preferred slicer's settings, otherwise the model will not slice correctly. Additionally, you have to turn on the spiral vase parameter in your slicer. If you do not know what vase mode is, [this](https://www.youtube.com/watch?v=HZSFoFYpBaA) is a helpful video.
1. Change the *Printer Settings* parameters to match your slicer and printer settings. 1. Change the *Printer Settings* parameters to match your slicer and printer settings.
2. Run the `gridfinityVaseBase()` module. This will generate a single spiral-capable base. Export as an STL file. You will need to print multiple of these, so it recommended to fill a base plate with them using the "complete individual objects" option (or equivilant) in your slicer. You only need to do this step initially, and then each time your printer settings change afterwards. 2. Run the `gridfinityVaseBase()` module. This will generate a single spiral-capable base. Export as an STL file. You will need to print multiple of these, so it recommended to fill a base plate with them using the "complete individual objects" option (or equivilant) in your slicer. You only need to do this step initially, and then each time your printer settings change afterwards.
3. Change the bin parameters and run `gridfinityVase()` module to generate the main bin. 3. Change the bin parameters and run `gridfinityVase()` module to generate the main bin.
4. Glue bases to the bottom of the bin. I recommend superglue on the corners and the top of the magnet holes. 4. Glue bases to the bottom of the bin. I recommend superglue on the corners and the top of the magnet holes.
How your sliced files should look (cross section shown for 1x1 bin): How your sliced files should look (cross section shown for 1x1 bin):
![Bin](images/slicer_bin.png) ![Bin](images/slicer_bin.png)
![Bin](images/slicer_base.png) ![Bin](images/slicer_base.png)
Example sliced files can be found on the [Printables](https://www.printables.com/model/284371-spiral-vase-gridfinity-in-openscad) page. Example sliced files can be found on the [Printables](https://www.printables.com/model/284371-spiral-vase-gridfinity-in-openscad) page.
## Statistics ## Statistics
Given how it has become a bit of a [challenge](https://www.printables.com/model/265271-gridfinity-lite-economical-plain-storage-bins) to reduce the weight and print time for these bins, here is a comparison for a large bin: Given how it has become a bit of a [challenge](https://www.printables.com/model/265271-gridfinity-lite-economical-plain-storage-bins) to reduce the weight and print time for these bins, here is a comparison for a large bin:
@ -32,7 +32,7 @@ Plain 4x2x6 Bin | 114.66g | 3h58m
Vase 4x2x6 Bin with 8 Bases | 68.31g | 2h27m Vase 4x2x6 Bin with 8 Bases | 68.31g | 2h27m
Vase 4x2x6 Bin with 4 Bases (only corners) | 56.43g | 1h59m Vase 4x2x6 Bin with 4 Bases (only corners) | 56.43g | 1h59m
Clearly, vase mode is very quick and quite lightweight. However, this fundamentally means the bins will be weaker, so keep that in mind. Clearly, vase mode is very quick and quite lightweight. However, this fundamentally means the bins will be weaker, so keep that in mind.
## Script Parameters ## Script Parameters
@ -42,9 +42,9 @@ type | { 0 , 1 } | generate the bin (0) or base (1)
nozzle | { n>0 \| n∈R } | extrusion width in slicer nozzle | { n>0 \| n∈R } | extrusion width in slicer
layer | { n>0 \| n∈R } | size of layers in slicer layer | { n>0 \| n∈R } | size of layers in slicer
bottom_layer | { n>0 \| n∈Z } | number of layers on the bottom of the print bottom_layer | { n>0 \| n∈Z } | number of layers on the bottom of the print
gridx | { n>0 \| n∈R } | number of bases along the x-axis gridx | { n>0 \| n∈R } | number of bases along the x-axis
gridy | { n>0 \| n∈R } | number of bases along the y-axis gridy | { n>0 \| n∈R } | number of bases along the y-axis
gridz | { n>0 \| n∈R } | bin height. See bin height information and <br> "gridz_define" below. gridz | { n>0 \| n∈R } | bin height. See bin height information and <br> "gridz_define" below.
length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of <br>Life, the Universe, and Everything.) length | { n>0 \| n∈R } | length of one unit of the base. <br> default: 42 (The Answer to the Ultimate Question of <br>Life, the Universe, and Everything.)
n_divx | { n>0 \| n∈Z } | number of compartments along X n_divx | { n>0 \| n∈Z } | number of compartments along X
enable_holes | boolean | toggle holes inside the base enable_holes | boolean | toggle holes inside the base
@ -52,24 +52,24 @@ enable_zsnap | boolean | automatically snap the bin size to the nearest <br> 7mm
enable_lip | boolean | if you are not stacking the bin, you can disable the <br>top lip to save space. default: true enable_lip | boolean | if you are not stacking the bin, you can disable the <br>top lip to save space. default: true
enable_scoop_chamfer | boolean | toggles the chamfer on bottom edge <br> for easy removal of items enable_scoop_chamfer | boolean | toggles the chamfer on bottom edge <br> for easy removal of items
enable_funnel | boolean | toggles funnel on back of tab. <br> acts as a finger grip and pour spout for small parts. enable_funnel | boolean | toggles funnel on back of tab. <br> acts as a finger grip and pour spout for small parts.
enable_inset | boolean | toggles an inset on the front of the bin. <br> adds strength when using scoop. enable_inset | boolean | toggles an inset on the front of the bin. <br> adds strength when using scoop.
enable_pinch | boolean | toggles an outside pinch at the top lip of the bin. <br> adds strength. enable_pinch | boolean | toggles an outside pinch at the top lip of the bin. <br> adds strength.
gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in mm <br> • (2) gridz is the overall external height of the bin in mm gridz_define | { n>0 \| n∈R } | determine what the variable "gridz" applies to based on <br> your use case. default: 0. <br> • (0) gridz is the height in # of 7mm increments (Zack) <br> • (1) gridz is the internal height in mm <br> • (2) gridz is the overall external height of the bin in mm
style_tab | { 0, 1, 2, 3, 4, 5 } | how the tabs for labels are generated. <br> • (0) Full tabs across the entire compartment <br> • (1) automatic tabs <br> - left aligned tabs on the left edge<br> - right aligned tabs on right edge<br> - center tabs otherwise <br> • (2) left aligned tabs <br> • (3) center aligned tabs <br> • (4) right aligned tabs <br> • (5) no tabs style_tab | { 0, 1, 2, 3, 4, 5 } | how the tabs for labels are generated. <br> • (0) Full tabs across the entire compartment <br> • (1) automatic tabs <br> - left aligned tabs on the left edge<br> - right aligned tabs on right edge<br> - center tabs otherwise <br> • (2) left aligned tabs <br> • (3) center aligned tabs <br> • (4) right aligned tabs <br> • (5) no tabs
style_base | { 0, 1, 2, 3, 4} | specifies the locations for the "X" cutouts for bases. <br> • (0) all <br> • (1) corners <br> • (2) edges <br> • (3) automatic <br> • (4) none style_base | { 0, 1, 2, 3, 4} | specifies the locations for the "X" cutouts for bases. <br> • (0) all <br> • (1) corners <br> • (2) edges <br> • (3) automatic <br> • (4) none
a_tab | { n>0 \| n∈R } | angle of the tab a_tab | { n>0 \| n∈R } | angle of the tab
## Modules ## Modules
### gridfinityVase ### gridfinityVase
Generates the compartment section of the bin. No parameters as it uses the global parameters for construction. Generates the compartment section of the bin. No parameters as it uses the global parameters for construction.
**`gridfinityVase()`** **`gridfinityVase()`**
### gridfinityVaseBase ### gridfinityVaseBase
Generates the base section of the bin. No parameters as it uses the global parameters for construction. It only generates a single base, as all of them are the same. Use your slicer with the "outpuit individual objects" option to print a full sheet of these, or as many as you need to fit your bins. Generates the base section of the bin. No parameters as it uses the global parameters for construction. It only generates a single base, as all of them are the same. Use your slicer with the "outpuit individual objects" option to print a full sheet of these, or as many as you need to fit your bins.
**`gridfinityVaseBase()`** **`gridfinityVaseBase()`**

View file

@ -17,9 +17,9 @@ $fs = 0.25;
/* [General Settings] */ /* [General Settings] */
// number of bases along x-axis // number of bases along x-axis
gridx = 5; gridx = 5;
// number of bases along y-axis // number of bases along y-axis
gridy = 5; gridy = 5;
/* [Screw Together Settings - Defaults work for M3 and 4-40] */ /* [Screw Together Settings - Defaults work for M3 and 4-40] */
// screw diameter // screw diameter
@ -50,7 +50,7 @@ fity = 0; // [-1:0.1:1]
style_plate = 0; // [0: thin, 1:weighted, 2:skeletonized, 3: screw together, 4: screw together minimal] style_plate = 0; // [0: thin, 1:weighted, 2:skeletonized, 3: screw together, 4: screw together minimal]
// enable magnet hole // enable magnet hole
enable_magnet = true; enable_magnet = true;
// hole styles // hole styles
style_hole = 2; // [0:none, 1:countersink, 2:counterbore] style_hole = 2; // [0:none, 1:countersink, 2:counterbore]
@ -59,19 +59,19 @@ style_hole = 2; // [0:none, 1:countersink, 2:counterbore]
// ===== IMPLEMENTATION ===== // // ===== IMPLEMENTATION ===== //
screw_together = (style_plate == 3 || style_plate == 4); screw_together = (style_plate == 3 || style_plate == 4);
color("tomato") color("tomato")
gridfinityBaseplate(gridx, gridy, l_grid, distancex, distancey, style_plate, enable_magnet, style_hole, fitx, fity); gridfinityBaseplate(gridx, gridy, l_grid, distancex, distancey, style_plate, enable_magnet, style_hole, fitx, fity);
// ===== CONSTRUCTION ===== // // ===== CONSTRUCTION ===== //
module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh, fitx, fity) { module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh, fitx, fity) {
assert(gridx > 0 || dix > 0, "Must have positive x grid amount!"); assert(gridx > 0 || dix > 0, "Must have positive x grid amount!");
assert(gridy > 0 || diy > 0, "Must have positive y grid amount!"); assert(gridy > 0 || diy > 0, "Must have positive y grid amount!");
gx = gridx == 0 ? floor(dix/length) : gridx; gx = gridx == 0 ? floor(dix/length) : gridx;
gy = gridy == 0 ? floor(diy/length) : gridy; gy = gridy == 0 ? floor(diy/length) : gridy;
dx = max(gx*length-bp_xy_clearence, dix); dx = max(gx*length-bp_xy_clearence, dix);
dy = max(gy*length-bp_xy_clearence, diy); dy = max(gy*length-bp_xy_clearence, diy);
@ -79,27 +79,27 @@ module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh, fitx, fit
offsetx = dix < dx ? 0 : (gx*length-bp_xy_clearence-dix)/2*fitx*-1; offsetx = dix < dx ? 0 : (gx*length-bp_xy_clearence-dix)/2*fitx*-1;
offsety = diy < dy ? 0 : (gy*length-bp_xy_clearence-diy)/2*fity*-1; offsety = diy < dy ? 0 : (gy*length-bp_xy_clearence-diy)/2*fity*-1;
difference() { difference() {
translate([offsetx,offsety,h_base]) translate([offsetx,offsety,h_base])
mirror([0,0,1]) mirror([0,0,1])
rounded_rectangle(dx, dy, h_base+off, r_base); rounded_rectangle(dx, dy, h_base+off, r_base);
gridfinityBase(gx, gy, length, 1, 1, 0, 0.5, false); gridfinityBase(gx, gy, length, 1, 1, 0, 0.5, false);
translate([offsetx,offsety,h_base-0.6]) translate([offsetx,offsety,h_base-0.6])
rounded_rectangle(dx*2, dy*2, h_base*2, r_base); rounded_rectangle(dx*2, dy*2, h_base*2, r_base);
pattern_linear(gx, gy, length) { pattern_linear(gx, gy, length) {
render(convexity = 6) { render(convexity = 6) {
if (sp == 1) if (sp == 1)
translate([0,0,-off]) translate([0,0,-off])
cutter_weight(); cutter_weight();
else if (sp == 2 || sp == 3) else if (sp == 2 || sp == 3)
linear_extrude(10*(h_base+off), center = true) linear_extrude(10*(h_base+off), center = true)
profile_skeleton(); profile_skeleton();
else if (sp == 4) else if (sp == 4)
translate([0,0,-5*(h_base+off)]) translate([0,0,-5*(h_base+off)])
rounded_square(length-2*r_c2-2*r_c1, 10*(h_base+off), r_fo3); rounded_square(length-2*r_c2-2*r_c1, 10*(h_base+off), r_fo3);
@ -113,12 +113,12 @@ module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh, fitx, fit
} }
} }
} }
if (sp == 3 || sp ==4) cutter_screw_together(gx, gy, off); if (sp == 3 || sp ==4) cutter_screw_together(gx, gy, off);
} }
} }
function calculate_off(sp, sm, sh) = function calculate_off(sp, sm, sh) =
screw_together screw_together
? 6.75 ? 6.75
:sp==0 :sp==0
@ -156,10 +156,10 @@ module hole_pattern(){
} }
module cutter_countersink(){ module cutter_countersink(){
cylinder(r = r_hole1+d_clear, h = 100*h_base, center = true); cylinder(r = r_hole1+d_clear, h = 100*h_base, center = true);
translate([0,0,d_cs]) translate([0,0,d_cs])
mirror([0,0,1]) mirror([0,0,1])
hull() { hull() {
cylinder(h = d_cs+10, r=r_hole1+d_clear); cylinder(h = d_cs+10, r=r_hole1+d_clear);
translate([0,0,d_cs]) translate([0,0,d_cs])
cylinder(h=d_cs+10, r=r_hole1+d_clear+d_cs); cylinder(h=d_cs+10, r=r_hole1+d_clear+d_cs);
@ -171,14 +171,14 @@ module cutter_counterbore(){
difference() { difference() {
cylinder(h = 2*(h_cb+0.2), r=r_cb, center=true); cylinder(h = 2*(h_cb+0.2), r=r_cb, center=true);
copy_mirror([0,1,0]) copy_mirror([0,1,0])
translate([-1.5*r_cb,r_hole1+d_clear+0.1,h_cb-h_slit]) translate([-1.5*r_cb,r_hole1+d_clear+0.1,h_cb-h_slit])
cube([r_cb*3,r_cb*3, 10]); cube([r_cb*3,r_cb*3, 10]);
} }
} }
module profile_skeleton() { module profile_skeleton() {
l = l_grid-2*r_c2-2*r_c1; l = l_grid-2*r_c2-2*r_c1;
minkowski() { minkowski() {
difference() { difference() {
square([l-2*r_skel+2*d_clear,l-2*r_skel+2*d_clear], center = true); square([l-2*r_skel+2*d_clear,l-2*r_skel+2*d_clear], center = true);
pattern_circular(4) pattern_circular(4)
@ -186,7 +186,7 @@ module profile_skeleton() {
minkowski() { minkowski() {
square([l,l]); square([l,l]);
circle(r_hole2+r_skel+2); circle(r_hole2+r_skel+2);
} }
} }
circle(r_skel); circle(r_skel);
} }
@ -197,7 +197,7 @@ module cutter_screw_together(gx, gy, off) {
screw(gx, gy); screw(gx, gy);
rotate([0,0,90]) rotate([0,0,90])
screw(gy, gx); screw(gy, gx);
module screw(a, b) { module screw(a, b) {
copy_mirror([1,0,0]) copy_mirror([1,0,0])
translate([a*l_grid/2, 0, -off/2]) translate([a*l_grid/2, 0, -off/2])

View file

@ -29,10 +29,10 @@ $fs = 0.25;
/* [General Settings] */ /* [General Settings] */
// number of bases along x-axis // number of bases along x-axis
gridx = 3; gridx = 3;
// number of bases along y-axis // number of bases along y-axis
gridy = 2; gridy = 2;
// bin height. See bin height information and "gridz_define" below. // bin height. See bin height information and "gridz_define" below.
gridz = 6; gridz = 6;
/* [Linear Compartments] */ /* [Linear Compartments] */
@ -59,7 +59,7 @@ c_depth = 1;
// determine what the variable "gridz" applies to based on your use case // determine what the variable "gridz" applies to based on your use case
gridz_define = 0; // [0:gridz is the height of bins in units of 7mm increments - Zack's method,1:gridz is the internal height in millimeters, 2:gridz is the overall external height of the bin in millimeters] gridz_define = 0; // [0:gridz is the height of bins in units of 7mm increments - Zack's method,1:gridz is the internal height in millimeters, 2:gridz is the overall external height of the bin in millimeters]
// overrides internal block height of bin (for solid containers). Leave zero for default height. Units: mm // overrides internal block height of bin (for solid containers). Leave zero for default height. Units: mm
height_internal = 0; height_internal = 0;
// snap gridz height to nearest 7mm increment // snap gridz height to nearest 7mm increment
enable_zsnap = false; enable_zsnap = false;
@ -68,7 +68,7 @@ enable_zsnap = false;
style_tab = 1; //[0:Full,1:Auto,2:Left,3:Center,4:Right,5:None] style_tab = 1; //[0:Full,1:Auto,2:Left,3:Center,4:Right,5:None]
// how should the top lip act // how should the top lip act
style_lip = 0; //[0: Regular lip, 1:remove lip subtractively, 2: remove lip and retain height] style_lip = 0; //[0: Regular lip, 1:remove lip subtractively, 2: remove lip and retain height]
// scoop weight percentage. 0 disables scoop, 1 is regular scoop. Any real number will scale the scoop. // scoop weight percentage. 0 disables scoop, 1 is regular scoop. Any real number will scale the scoop.
scoop = 1; //[0:0.1:1] scoop = 1; //[0:0.1:1]
// only cut magnet/screw holes at the corners of the bin to save uneccesary print time // only cut magnet/screw holes at the corners of the bin to save uneccesary print time
only_corners = false; only_corners = false;
@ -78,7 +78,7 @@ style_hole = 4; // [0:no holes, 1:magnet holes only, 2: magnet and screw holes -
// number of divisions per 1 unit of base along the X axis. (default 1, only use integers. 0 means automatically guess the right division) // number of divisions per 1 unit of base along the X axis. (default 1, only use integers. 0 means automatically guess the right division)
div_base_x = 0; div_base_x = 0;
// number of divisions per 1 unit of base along the Y axis. (default 1, only use integers. 0 means automatically guess the right division) // number of divisions per 1 unit of base along the Y axis. (default 1, only use integers. 0 means automatically guess the right division)
div_base_y = 0; div_base_y = 0;
@ -88,11 +88,11 @@ color("tomato") {
gridfinityInit(gridx, gridy, height(gridz, gridz_define, style_lip, enable_zsnap), height_internal) { gridfinityInit(gridx, gridy, height(gridz, gridz_define, style_lip, enable_zsnap), height_internal) {
if (divx > 0 && divy > 0) { if (divx > 0 && divy > 0) {
cutEqual(n_divx = divx, n_divy = divy, style_tab = style_tab, scoop_weight = scoop); cutEqual(n_divx = divx, n_divy = divy, style_tab = style_tab, scoop_weight = scoop);
} else if (cdivx > 0 && cdivy > 0) { } else if (cdivx > 0 && cdivy > 0) {
cutCylinders(n_divx=cdivx, n_divy=cdivy, cylinder_diameter=cd, cylinder_height=ch, coutout_depth=c_depth, orientation=c_orientation); cutCylinders(n_divx=cdivx, n_divy=cdivy, cylinder_diameter=cd, cylinder_height=ch, coutout_depth=c_depth, orientation=c_orientation);
} }
} }
@ -110,24 +110,24 @@ gridfinityInit(3, 3, height(6), 0, 42) {
gridfinityBase(3, 3, 42, 0, 0, 1); gridfinityBase(3, 3, 42, 0, 0, 1);
*/ */
// Compartments can be placed anywhere (this includes non-integer positions like 1/2 or 1/3). The grid is defined as (0,0) being the bottom left corner of the bin, with each unit being 1 base long. Each cut() module is a compartment, with the first four values defining the area that should be made into a compartment (X coord, Y coord, width, and height). These values should all be positive. t is the tab style of the compartment (0:full, 1:auto, 2:left, 3:center, 4:right, 5:none). s is a toggle for the bottom scoop. // Compartments can be placed anywhere (this includes non-integer positions like 1/2 or 1/3). The grid is defined as (0,0) being the bottom left corner of the bin, with each unit being 1 base long. Each cut() module is a compartment, with the first four values defining the area that should be made into a compartment (X coord, Y coord, width, and height). These values should all be positive. t is the tab style of the compartment (0:full, 1:auto, 2:left, 3:center, 4:right, 5:none). s is a toggle for the bottom scoop.
/* /*
gridfinityInit(3, 3, height(6), 0, 42) { gridfinityInit(3, 3, height(6), 0, 42) {
cut(x=0, y=0, w=1.5, h=0.5, t=5, s=0); cut(x=0, y=0, w=1.5, h=0.5, t=5, s=0);
cut(0, 0.5, 1.5, 0.5, 5, 0); cut(0, 0.5, 1.5, 0.5, 5, 0);
cut(0, 1, 1.5, 0.5, 5, 0); cut(0, 1, 1.5, 0.5, 5, 0);
cut(0,1.5,0.5,1.5,5,0); cut(0,1.5,0.5,1.5,5,0);
cut(0.5,1.5,0.5,1.5,5,0); cut(0.5,1.5,0.5,1.5,5,0);
cut(1,1.5,0.5,1.5,5,0); cut(1,1.5,0.5,1.5,5,0);
cut(1.5, 0, 1.5, 5/3, 2); cut(1.5, 0, 1.5, 5/3, 2);
cut(1.5, 5/3, 1.5, 4/3, 4); cut(1.5, 5/3, 1.5, 4/3, 4);
} }
gridfinityBase(3, 3, 42, 0, 0, 1); gridfinityBase(3, 3, 42, 0, 0, 1);
*/ */
// Compartments can overlap! This allows for weirdly shaped compartments, such as this "2" bin. // Compartments can overlap! This allows for weirdly shaped compartments, such as this "2" bin.
/* /*
gridfinityInit(3, 3, height(6), 0, 42) { gridfinityInit(3, 3, height(6), 0, 42) {
cut(0,2,2,1,5,0); cut(0,2,2,1,5,0);
@ -144,8 +144,8 @@ gridfinityBase(3, 3, 42, 0, 0, 1);
gridfinityInit(3, 3, height(6), 0, 42) { gridfinityInit(3, 3, height(6), 0, 42) {
cut(x=0, y=0, w=2, h=3); cut(x=0, y=0, w=2, h=3);
cut(x=0, y=0, w=3, h=1, t=5); cut(x=0, y=0, w=3, h=1, t=5);
cut_move(x=2, y=1, w=1, h=2) cut_move(x=2, y=1, w=1, h=2)
pattern_linear(x=1, y=3, sx=42/2) pattern_linear(x=1, y=3, sx=42/2)
cylinder(r=5, h=1000, center=true); cylinder(r=5, h=1000, center=true);
} }
gridfinityBase(3, 3, 42, 0, 0, 1); gridfinityBase(3, 3, 42, 0, 0, 1);
@ -169,9 +169,9 @@ gridfinityBase(gx, gy, 42, 0, 0, 1);
gx = 4.5; gx = 4.5;
gy = 4; gy = 4;
gridfinityInit(gx, gy, height(6), 0, 42) { gridfinityInit(gx, gy, height(6), 0, 42) {
for (i = [0:gx-1]) for (i = [0:gx-1])
for (j = [0:i]) for (j = [0:i])
cut(j*gx/(i+1),gy-i-1,gx/(i+1),1,0); cut(j*gx/(i+1),gy-i-1,gx/(i+1),1,0);
} }
gridfinityBase(gx, gy, 42, 0, 0, 1); gridfinityBase(gx, gy, 42, 0, 0, 1);
*/ */

View file

@ -16,10 +16,10 @@ $fs = 0.25;
/* [General Settings] */ /* [General Settings] */
// number of bases along x-axis // number of bases along x-axis
gridx = 3; gridx = 3;
// number of bases along y-axis // number of bases along y-axis
gridy = 3; gridy = 3;
// bin height. See bin height information and "gridz_define" below. // bin height. See bin height information and "gridz_define" below.
gridz = 6; gridz = 6;
/* [Compartments] */ /* [Compartments] */
@ -47,7 +47,7 @@ only_corners = false;
// number of divisions per 1 unit of base along the X axis. (default 1, only use integers. 0 means automatically guess the right division) // number of divisions per 1 unit of base along the X axis. (default 1, only use integers. 0 means automatically guess the right division)
div_base_x = 0; div_base_x = 0;
// number of divisions per 1 unit of base along the Y axis. (default 1, only use integers. 0 means automatically guess the right division) // number of divisions per 1 unit of base along the Y axis. (default 1, only use integers. 0 means automatically guess the right division)
div_base_y = 0; div_base_y = 0;
// thickness of bottom layer // thickness of bottom layer
bottom_layer = 1; bottom_layer = 1;
@ -62,8 +62,7 @@ gridfinityLite(gridx, gridy, gridz, gridz_define, style_lip, enable_zsnap, l_gri
// ===== CONSTRUCTION ===== // // ===== CONSTRUCTION ===== //
module gridfinityLite(gridx, gridy, gridz, gridz_define, style_lip, enable_zsnap, length, div_base_x, div_base_y, style_hole, only_corners) {
module gridfinityLite(gridx, gridy, gridz, gridz_define, style_lip, enable_zsnap, length, div_base_x, div_base_y, style_hole, only_corners) {
union() { union() {
difference() { difference() {
union() { union() {
@ -132,6 +131,6 @@ module gridfinityLite(gridx, gridy, gridz, gridz_define, style_lip, enable_zsnap
translate([0,0,0]) translate([0,0,0])
rounded_rectangle(gridx*1000, gridy*1000, 5, r_f2); rounded_rectangle(gridx*1000, gridy*1000, 5, r_f2);
} }
} }
} }

View file

@ -11,13 +11,13 @@ function height (z,d=0,l=0,s=true) = (s?((abs(hf(z,d,l))%7==0)?hf(z,d,l):hf(z,d,
// Creates equally divided cutters for the bin // Creates equally divided cutters for the bin
// //
// n_divx: number of x compartments (ideally, coprime w/ gridx) // n_divx: number of x compartments (ideally, coprime w/ gridx)
// n_divy: number of y compartments (ideally, coprime w/ gridy) // n_divy: number of y compartments (ideally, coprime w/ gridy)
// set n_div values to 0 for a solid bin // set n_div values to 0 for a solid bin
// style_tab: tab style for all compartments. see cut() // style_tab: tab style for all compartments. see cut()
// scoop_weight: scoop toggle for all compartments. see cut() // scoop_weight: scoop toggle for all compartments. see cut()
module cutEqual(n_divx=1, n_divy=1, style_tab=1, scoop_weight=1) { module cutEqual(n_divx=1, n_divy=1, style_tab=1, scoop_weight=1) {
for (i = [1:n_divx]) for (i = [1:n_divx])
for (j = [1:n_divy]) for (j = [1:n_divy])
cut((i-1)*$gxx/n_divx,(j-1)*$gyy/n_divy, $gxx/n_divx, $gyy/n_divy, style_tab, scoop_weight); cut((i-1)*$gxx/n_divx,(j-1)*$gyy/n_divy, $gxx/n_divx, $gyy/n_divy, style_tab, scoop_weight);
} }
@ -43,11 +43,11 @@ module cutCylinders(n_divx=1, n_divy=1, cylinder_diameter=1, cylinder_height=1,
padding = 2; padding = 2;
cutout_x = gridx_mm - d_wall*2; cutout_x = gridx_mm - d_wall*2;
cutout_y = gridy_mm - d_wall*2; cutout_y = gridy_mm - d_wall*2;
cut_move(x=0, y=0, w=$gxx, h=$gyy) { cut_move(x=0, y=0, w=$gxx, h=$gyy) {
translate([0,0,-coutout_depth]) { translate([0,0,-coutout_depth]) {
rounded_rectangle(cutout_x, cutout_y, coutout_depth*2, r_base); rounded_rectangle(cutout_x, cutout_y, coutout_depth*2, r_base);
pattern_linear(x=n_divx, y=n_divy, sx=(gridx_mm - 2)/n_divx, sy=(gridy_mm - 2)/n_divy) pattern_linear(x=n_divx, y=n_divy, sx=(gridx_mm - 2)/n_divx, sy=(gridy_mm - 2)/n_divy)
rotate(rotation) rotate(rotation)
cylinder(r=cylinder_diameter/2, h=cylinder_height*2, center=true); cylinder(r=cylinder_diameter/2, h=cylinder_height*2, center=true);
@ -59,32 +59,32 @@ module cutCylinders(n_divx=1, n_divy=1, cylinder_diameter=1, cylinder_height=1,
module gridfinityInit(gx, gy, h, h0 = 0, l = l_grid) { module gridfinityInit(gx, gy, h, h0 = 0, l = l_grid) {
$gxx = gx; $gxx = gx;
$gyy = gy; $gyy = gy;
$dh = h; $dh = h;
$dh0 = h0; $dh0 = h0;
color("tomato") { color("tomato") {
difference() { difference() {
color("firebrick") color("firebrick")
block_bottom(h0==0?$dh-0.1:h0, gx, gy, l); block_bottom(h0==0?$dh-0.1:h0, gx, gy, l);
children(); children();
} }
color("royalblue") color("royalblue")
block_wall(gx, gy, l) { block_wall(gx, gy, l) {
if (style_lip == 0) profile_wall(); if (style_lip == 0) profile_wall();
else profile_wall2(); else profile_wall2();
} }
} }
} }
// Function to include in the custom() module to individually slice bins // Function to include in the custom() module to individually slice bins
// Will try to clamp values to fit inside the provided base size // Will try to clamp values to fit inside the provided base size
// //
// x: start coord. x=1 is the left side of the bin. // x: start coord. x=1 is the left side of the bin.
// y: start coord. y=1 is the bottom side of the bin. // y: start coord. y=1 is the bottom side of the bin.
// w: width of compartment, in # of bases covered // w: width of compartment, in # of bases covered
// h: height of compartment, in # of basese covered // h: height of compartment, in # of basese covered
// t: tab style of this specific compartment. // t: tab style of this specific compartment.
// alignment only matters if the compartment size is larger than d_tabw // alignment only matters if the compartment size is larger than d_tabw
// 0:full, 1:auto, 2:left, 3:center, 4:right, 5:none // 0:full, 1:auto, 2:left, 3:center, 4:right, 5:none
// Automatic alignment will use left tabs for bins on the left edge, right tabs for bins on the right edge, and center tabs everywhere else. // Automatic alignment will use left tabs for bins on the left edge, right tabs for bins on the right edge, and center tabs everywhere else.
// s: toggle the rounded back corner that allows for easy removal // s: toggle the rounded back corner that allows for easy removal
module cut(x=0, y=0, w=1, h=1, t=1, s=1) { module cut(x=0, y=0, w=1, h=1, t=1, s=1) {
translate([0,0,-$dh-h_base]) translate([0,0,-$dh-h_base])
@ -120,26 +120,26 @@ module gridfinityBase(gx, gy, l, dx, dy, style_hole, off=0, final_cut=true, only
dbny = 1/(dy==0 ? len(dbnyt) > 0 ? dbnyt[0] : 1 : round(dy)); dbny = 1/(dy==0 ? len(dbnyt) > 0 ? dbnyt[0] : 1 : round(dy));
xx = gx*l-0.5; xx = gx*l-0.5;
yy = gy*l-0.5; yy = gy*l-0.5;
if (final_cut) if (final_cut)
translate([0,0,h_base]) translate([0,0,h_base])
rounded_rectangle(xx+0.002, yy+0.002, h_bot/1.5, r_fo1/2+0.001); rounded_rectangle(xx+0.002, yy+0.002, h_bot/1.5, r_fo1/2+0.001);
intersection(){ intersection(){
if (final_cut) if (final_cut)
translate([0,0,-1]) translate([0,0,-1])
rounded_rectangle(xx+0.005, yy+0.005, h_base+h_bot/2*10, r_fo1/2+0.001); rounded_rectangle(xx+0.005, yy+0.005, h_base+h_bot/2*10, r_fo1/2+0.001);
if(only_corners) { if(only_corners) {
difference(){ difference(){
pattern_linear(gx/dbnx, gy/dbny, dbnx*l, dbny*l) pattern_linear(gx/dbnx, gy/dbny, dbnx*l, dbny*l)
block_base(gx, gy, l, dbnx, dbny, 0, off); block_base(gx, gy, l, dbnx, dbny, 0, off);
pattern_linear(2, 2, (gx-1)*l_grid+d_hole, (gy-1)*l_grid+d_hole) pattern_linear(2, 2, (gx-1)*l_grid+d_hole, (gy-1)*l_grid+d_hole)
block_base_hole(style_hole, off); block_base_hole(style_hole, off);
} }
} }
else { else {
pattern_linear(gx/dbnx, gy/dbny, dbnx*l, dbny*l) pattern_linear(gx/dbnx, gy/dbny, dbnx*l, dbny*l)
block_base(gx, gy, l, dbnx, dbny, style_hole, off); block_base(gx, gy, l, dbnx, dbny, style_hole, off);
} }
} }
@ -149,7 +149,7 @@ module block_base(gx, gy, l, dbnx, dbny, style_hole, off) {
render(convexity = 2) render(convexity = 2)
difference() { difference() {
block_base_solid(dbnx, dbny, l, off); block_base_solid(dbnx, dbny, l, off);
if (style_hole > 0) if (style_hole > 0)
pattern_circular(abs(l-d_hole_from_side/2)<0.001?1:4) pattern_circular(abs(l-d_hole_from_side/2)<0.001?1:4)
if (style_hole == 4) if (style_hole == 4)
@ -161,9 +161,9 @@ module block_base(gx, gy, l, dbnx, dbny, style_hole, off) {
} }
} }
module block_base_solid(dbnx, dbny, l, o) { module block_base_solid(dbnx, dbny, l, o) {
xx = dbnx*l-0.05; xx = dbnx*l-0.05;
yy = dbny*l-0.05; yy = dbny*l-0.05;
oo = (o/2)*(sqrt(2)-1); oo = (o/2)*(sqrt(2)-1);
translate([0,0,h_base]) translate([0,0,h_base])
mirror([0,0,1]) mirror([0,0,1])
@ -190,7 +190,7 @@ module block_base_hole(style_hole, o=0) {
if (style_hole==3) if (style_hole==3)
copy_mirror([0,1,0]) copy_mirror([0,1,0])
translate([-1.5*r2,r1+0.1,h_hole-o]) translate([-1.5*r2,r1+0.1,h_hole-o])
cube([r2*3,r2*3, 10]); cube([r2*3,r2*3, 10]);
} }
if (style_hole > 1) if (style_hole > 1)
@ -246,9 +246,9 @@ module profile_wall_sub() {
difference() { difference() {
profile_wall_sub_sub(); profile_wall_sub_sub();
color("red") color("red")
offset(delta = d_clear) offset(delta = d_clear)
translate([r_base-d_clear,$dh,0]) translate([r_base-d_clear,$dh,0])
mirror([1,0,0]) mirror([1,0,0])
profile_base(); profile_base();
} }
} }
@ -259,9 +259,9 @@ module profile_wall() {
difference() { difference() {
profile_wall_sub(); profile_wall_sub();
difference() { difference() {
translate([0, $dh+h_base-d_clear*sqrt(2), 0]) translate([0, $dh+h_base-d_clear*sqrt(2), 0])
circle(r_base/2); circle(r_base/2);
offset(r = r_f1) offset(r = r_f1)
offset(delta = -r_f1) offset(delta = -r_f1)
profile_wall_sub(); profile_wall_sub();
} }
@ -273,13 +273,13 @@ module profile_wall() {
// lipless profile // lipless profile
module profile_wall2() { module profile_wall2() {
translate([r_base,0,0]) translate([r_base,0,0])
mirror([1,0,0]) mirror([1,0,0])
square([d_wall,$dh]); square([d_wall,$dh]);
} }
module block_wall(gx, gy, l) { module block_wall(gx, gy, l) {
translate([0,0,h_base]) translate([0,0,h_base])
sweep_rounded(gx*l-2*r_base-0.5-0.001, gy*l-2*r_base-0.5-0.001) sweep_rounded(gx*l-2*r_base-0.5-0.001, gy*l-2*r_base-0.5-0.001)
children(); children();
} }
@ -291,7 +291,7 @@ module block_bottom( h = 2.2, gx, gy, l ) {
module cut_move_unsafe(x, y, w, h) { module cut_move_unsafe(x, y, w, h) {
xx = ($gxx*l_grid+d_magic); xx = ($gxx*l_grid+d_magic);
yy = ($gyy*l_grid+d_magic); yy = ($gyy*l_grid+d_magic);
translate([(x)*xx/$gxx,(y)*yy/$gyy,0]) translate([(x)*xx/$gxx,(y)*yy/$gyy,0])
translate([(-xx+d_div)/2,(-yy+d_div)/2,0]) translate([(-xx+d_div)/2,(-yy+d_div)/2,0])
translate([(w*xx/$gxx-d_div)/2,(h*yy/$gyy-d_div)/2,0]) translate([(w*xx/$gxx-d_div)/2,(h*yy/$gyy-d_div)/2,0])
@ -299,44 +299,44 @@ module cut_move_unsafe(x, y, w, h) {
} }
module block_cutter(x,y,w,h,t,s) { module block_cutter(x,y,w,h,t,s) {
v_len_tab = d_tabh; v_len_tab = d_tabh;
v_len_lip = d_wall2-d_wall+1.2; v_len_lip = d_wall2-d_wall+1.2;
v_cut_tab = d_tabh - (2*r_f1)/tan(a_tab); v_cut_tab = d_tabh - (2*r_f1)/tan(a_tab);
v_cut_lip = d_wall2-d_wall-d_clear; v_cut_lip = d_wall2-d_wall-d_clear;
v_ang_tab = a_tab; v_ang_tab = a_tab;
v_ang_lip = 45; v_ang_lip = 45;
ycutfirst = y == 0 && style_lip == 0; ycutfirst = y == 0 && style_lip == 0;
ycutlast = abs(y+h-$gyy)<0.001 && style_lip == 0; ycutlast = abs(y+h-$gyy)<0.001 && style_lip == 0;
xcutfirst = x == 0 && style_lip == 0; xcutfirst = x == 0 && style_lip == 0;
xcutlast = abs(x+w-$gxx)<0.001 && style_lip == 0; xcutlast = abs(x+w-$gxx)<0.001 && style_lip == 0;
zsmall = ($dh+h_base)/7 < 3; zsmall = ($dh+h_base)/7 < 3;
ylen = h*($gyy*l_grid+d_magic)/$gyy-d_div; ylen = h*($gyy*l_grid+d_magic)/$gyy-d_div;
xlen = w*($gxx*l_grid+d_magic)/$gxx-d_div; xlen = w*($gxx*l_grid+d_magic)/$gxx-d_div;
height = $dh; height = $dh;
extent = (abs(s) > 0 && ycutfirst ? d_wall2-d_wall-d_clear : 0); extent = (abs(s) > 0 && ycutfirst ? d_wall2-d_wall-d_clear : 0);
tab = (zsmall || t == 5) ? (ycutlast?v_len_lip:0) : v_len_tab; tab = (zsmall || t == 5) ? (ycutlast?v_len_lip:0) : v_len_tab;
ang = (zsmall || t == 5) ? (ycutlast?v_ang_lip:0) : v_ang_tab; ang = (zsmall || t == 5) ? (ycutlast?v_ang_lip:0) : v_ang_tab;
cut = (zsmall || t == 5) ? (ycutlast?v_cut_lip:0) : v_cut_tab; cut = (zsmall || t == 5) ? (ycutlast?v_cut_lip:0) : v_cut_tab;
style = (t > 1 && t < 5) ? t-3 : (x == 0 ? -1 : xcutlast ? 1 : 0); style = (t > 1 && t < 5) ? t-3 : (x == 0 ? -1 : xcutlast ? 1 : 0);
translate([0,ylen/2,h_base+h_bot]) translate([0,ylen/2,h_base+h_bot])
rotate([90,0,-90]) { rotate([90,0,-90]) {
if (!zsmall && xlen - d_tabw > 4*r_f2 && (t != 0 && t != 5)) { if (!zsmall && xlen - d_tabw > 4*r_f2 && (t != 0 && t != 5)) {
fillet_cutter(3,"bisque") fillet_cutter(3,"bisque")
difference() { difference() {
transform_tab(style, xlen, ((xcutfirst&&style==-1)||(xcutlast&&style==1))?v_cut_lip:0) transform_tab(style, xlen, ((xcutfirst&&style==-1)||(xcutlast&&style==1))?v_cut_lip:0)
translate([ycutlast?v_cut_lip:0,0]) translate([ycutlast?v_cut_lip:0,0])
profile_cutter(height-h_bot, ylen/2, s); profile_cutter(height-h_bot, ylen/2, s);
if (xcutfirst) if (xcutfirst)
translate([0,0,(xlen/2-r_f2)-v_cut_lip]) translate([0,0,(xlen/2-r_f2)-v_cut_lip])
cube([ylen,height,v_cut_lip*2]); cube([ylen,height,v_cut_lip*2]);
if (xcutlast) if (xcutlast)
translate([0,0,-(xlen/2-r_f2)-v_cut_lip]) translate([0,0,-(xlen/2-r_f2)-v_cut_lip])
cube([ylen,height,v_cut_lip*2]); cube([ylen,height,v_cut_lip*2]);
@ -351,14 +351,14 @@ module block_cutter(x,y,w,h,t,s) {
profile_cutter_tab(height-h_bot, v_len_tab, v_ang_tab); profile_cutter_tab(height-h_bot, v_len_tab, v_ang_tab);
} }
if (ycutlast) profile_cutter_tab(height-h_bot, v_len_lip, 45); if (ycutlast) profile_cutter_tab(height-h_bot, v_len_lip, 45);
} }
if (xcutfirst) if (xcutfirst)
translate([ylen/2,0,xlen/2]) translate([ylen/2,0,xlen/2])
rotate([0,90,0]) rotate([0,90,0])
transform_main(2*ylen) transform_main(2*ylen)
profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip); profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip);
if (xcutlast) if (xcutlast)
translate([ylen/2,0,-xlen/2]) translate([ylen/2,0,-xlen/2])
rotate([0,-90,0]) rotate([0,-90,0])
@ -366,36 +366,36 @@ module block_cutter(x,y,w,h,t,s) {
profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip); profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip);
} }
} }
fillet_cutter(1,"seagreen") fillet_cutter(1,"seagreen")
translate([0,0,xcutlast?v_cut_lip/2:0]) translate([0,0,xcutlast?v_cut_lip/2:0])
translate([0,0,xcutfirst?-v_cut_lip/2:0]) translate([0,0,xcutfirst?-v_cut_lip/2:0])
transform_main(xlen-(xcutfirst?v_cut_lip:0)-(xcutlast?v_cut_lip:0)) transform_main(xlen-(xcutfirst?v_cut_lip:0)-(xcutlast?v_cut_lip:0))
translate([cut,0]) translate([cut,0])
profile_cutter(height-h_bot, ylen-extent-cut-(!s&&ycutfirst?v_cut_lip:0), s); profile_cutter(height-h_bot, ylen-extent-cut-(!s&&ycutfirst?v_cut_lip:0), s);
fillet_cutter(0,"hotpink") fillet_cutter(0,"hotpink")
difference() { difference() {
transform_main(xlen) transform_main(xlen)
difference() { difference() {
profile_cutter(height-h_bot, ylen-extent, s); profile_cutter(height-h_bot, ylen-extent, s);
if (!((zsmall || t == 5) && !ycutlast)) if (!((zsmall || t == 5) && !ycutlast))
profile_cutter_tab(height-h_bot, tab, ang); profile_cutter_tab(height-h_bot, tab, ang);
if (!(abs(s) > 0)&& y == 0) if (!(abs(s) > 0)&& y == 0)
translate([ylen-extent,0,0]) translate([ylen-extent,0,0])
mirror([1,0,0]) mirror([1,0,0])
profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip); profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip);
} }
if (xcutfirst) if (xcutfirst)
color("indigo") color("indigo")
translate([ylen/2+0.001,0,xlen/2+0.001]) translate([ylen/2+0.001,0,xlen/2+0.001])
rotate([0,90,0]) rotate([0,90,0])
transform_main(2*ylen) transform_main(2*ylen)
profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip); profile_cutter_tab(height-h_bot, v_len_lip, v_ang_lip);
if (xcutlast) if (xcutlast)
color("indigo") color("indigo")
translate([ylen/2+0.001,0,-xlen/2+0.001]) translate([ylen/2+0.001,0,-xlen/2+0.001])
@ -431,32 +431,32 @@ module fillet_cutter(t = 0, c = "goldenrod") {
} }
module profile_cutter(h, l, s) { module profile_cutter(h, l, s) {
scoop = max(s*$dh/2-r_f2,0); scoop = max(s*$dh/2-r_f2,0);
translate([r_f2,r_f2]) translate([r_f2,r_f2])
hull() { hull() {
if (l-scoop-2*r_f2 > 0) if (l-scoop-2*r_f2 > 0)
square(0.1); square(0.1);
if (scoop < h) { if (scoop < h) {
translate([l-2*r_f2,h-r_f2/2]) translate([l-2*r_f2,h-r_f2/2])
mirror([1,1]) mirror([1,1])
square(0.1); square(0.1);
translate([0,h-r_f2/2]) translate([0,h-r_f2/2])
mirror([0,1]) mirror([0,1])
square(0.1); square(0.1);
} }
difference() { difference() {
translate([l-scoop-2*r_f2, scoop]) translate([l-scoop-2*r_f2, scoop])
if (scoop != 0) { if (scoop != 0) {
intersection() { intersection() {
circle(scoop); circle(scoop);
mirror([0,1]) square(2*scoop); mirror([0,1]) square(2*scoop);
} }
} else mirror([1,0]) square(0.1); } else mirror([1,0]) square(0.1);
translate([l-scoop-2*r_f2,-1]) translate([l-scoop-2*r_f2,-1])
square([-(l-scoop-2*r_f2),2*h]); square([-(l-scoop-2*r_f2),2*h]);
translate([0,h]) translate([0,h])
square([2*l,scoop]); square([2*l,scoop]);
} }
} }
@ -467,7 +467,7 @@ module profile_cutter_tab(h, tab, ang) {
color("blue") color("blue")
offset(delta = r_f2) offset(delta = r_f2)
polygon([[0,h],[tab,h],[0,h-tab*tan(ang)]]); polygon([[0,h],[tab,h],[0,h-tab*tan(ang)]]);
} }
// ==== Utilities ===== // ==== Utilities =====
@ -476,8 +476,8 @@ function clp(x,a,b) = min(max(x,a),b);
module rounded_rectangle(length, width, height, rad) { module rounded_rectangle(length, width, height, rad) {
linear_extrude(height) linear_extrude(height)
offset(rad) offset(rad)
offset(-rad) offset(-rad)
square([length,width], center = true); square([length,width], center = true);
} }
@ -487,38 +487,38 @@ module rounded_square(length, height, rad) {
module copy_mirror(vec=[0,1,0]) { module copy_mirror(vec=[0,1,0]) {
children(); children();
if (vec != [0,0,0]) if (vec != [0,0,0])
mirror(vec) mirror(vec)
children(); children();
} }
module pattern_linear(x = 1, y = 1, sx = 0, sy = 0) { module pattern_linear(x = 1, y = 1, sx = 0, sy = 0) {
yy = sy <= 0 ? sx : sy; yy = sy <= 0 ? sx : sy;
translate([-(x-1)*sx/2,-(y-1)*yy/2,0]) translate([-(x-1)*sx/2,-(y-1)*yy/2,0])
for (i = [1:ceil(x)]) for (i = [1:ceil(x)])
for (j = [1:ceil(y)]) for (j = [1:ceil(y)])
translate([(i-1)*sx,(j-1)*yy,0]) translate([(i-1)*sx,(j-1)*yy,0])
children(); children();
} }
module pattern_circular(n=2) { module pattern_circular(n=2) {
for (i = [1:n]) for (i = [1:n])
rotate(i*360/n) rotate(i*360/n)
children(); children();
} }
module sweep_rounded(w=10, h=10) { module sweep_rounded(w=10, h=10) {
union() pattern_circular(2) { union() pattern_circular(2) {
copy_mirror([1,0,0]) copy_mirror([1,0,0])
translate([w/2,h/2,0]) translate([w/2,h/2,0])
rotate_extrude(angle = 90, convexity = 4) rotate_extrude(angle = 90, convexity = 4)
children(); children();
translate([w/2,0,0]) translate([w/2,0,0])
rotate([90,0,0]) rotate([90,0,0])
linear_extrude(height = h, center = true) linear_extrude(height = h, center = true)
children(); children();
rotate([0,0,90]) rotate([0,0,90])
translate([h/2,0,0]) translate([h/2,0,0])
rotate([90,0,0]) rotate([90,0,0])
@ -526,4 +526,3 @@ module sweep_rounded(w=10, h=10) {
children(); children();
} }
} }

View file

@ -19,37 +19,37 @@ type = 0; // [0:bin, 1:base]
/* [Printer Settings] */ /* [Printer Settings] */
// extrusion width (walls will be twice this size) // extrusion width (walls will be twice this size)
nozzle = 0.6; nozzle = 0.6;
// slicer layer size // slicer layer size
layer = 0.35; layer = 0.35;
// number of base layers on build plate // number of base layers on build plate
bottom_layer = 3; bottom_layer = 3;
/* [General Settings] */ /* [General Settings] */
// number of bases along x-axis // number of bases along x-axis
gridx = 1; gridx = 1;
// number of bases along y-axis // number of bases along y-axis
gridy = 1; gridy = 1;
// bin height. See bin height information and "gridz_define" below. // bin height. See bin height information and "gridz_define" below.
gridz = 6; gridz = 6;
// number of compartments along x-axis // number of compartments along x-axis
n_divx = 2; n_divx = 2;
/* [Toggles] */ /* [Toggles] */
// toggle holes on the base for magnet // toggle holes on the base for magnet
enable_holes = true; enable_holes = true;
// round up the bin height to match the closest 7mm unit // round up the bin height to match the closest 7mm unit
enable_zsnap = false; enable_zsnap = false;
// toggle the lip on the top of the bin that allows stacking // toggle the lip on the top of the bin that allows stacking
enable_lip = true; enable_lip = true;
// chamfer inside bin for easy part removal // chamfer inside bin for easy part removal
enable_scoop_chamfer = true; enable_scoop_chamfer = true;
// funnel-like features on the back of tabs for fingers to grab // funnel-like features on the back of tabs for fingers to grab
enable_funnel = true; enable_funnel = true;
// front inset (added for strength when there is a scoop) // front inset (added for strength when there is a scoop)
enable_inset = true; enable_inset = true;
// "pinches" the top lip of the bin, for added strength // "pinches" the top lip of the bin, for added strength
enable_pinch = true; enable_pinch = true;
/* [Styles] */ /* [Styles] */
// determine what the variable "gridz" applies to based on your use case // determine what the variable "gridz" applies to based on your use case
@ -59,53 +59,53 @@ style_tab = 0; // [0:continuous, 1:broken, 2:auto, 3:right, 4:center, 5:left, 6:
// where to put X cutouts for attaching bases // where to put X cutouts for attaching bases
// selecting none will also disable crosses on bases // selecting none will also disable crosses on bases
style_base = 0; // [0:all, 1:corners, 2:edges, 3:auto, 4:none] style_base = 0; // [0:all, 1:corners, 2:edges, 3:auto, 4:none]
// tab angle // tab angle
a_tab = 40; a_tab = 40;
// ===== IMPLEMENTATION ===== // // ===== IMPLEMENTATION ===== //
color("tomato") color("tomato")
if (type != 0) gridfinityBaseVase(); // Generate a single base if (type != 0) gridfinityBaseVase(); // Generate a single base
else gridfinityVase(); // Generate the bin else gridfinityVase(); // Generate the bin
// ===== CONSTRUCTION ===== // // ===== CONSTRUCTION ===== //
d_bottom = layer*(max(bottom_layer,1)); d_bottom = layer*(max(bottom_layer,1));
x_l = l_grid/2; x_l = l_grid/2;
dht = (gridz_define==0)?gridz*7 : (gridz_define==1)?h_bot+gridz+h_base : gridz-(enable_lip?3.8:0); dht = (gridz_define==0)?gridz*7 : (gridz_define==1)?h_bot+gridz+h_base : gridz-(enable_lip?3.8:0);
d_height = (enable_zsnap?((abs(dht)%7==0)?dht:dht+7-abs(dht)%7):dht)-h_base; d_height = (enable_zsnap?((abs(dht)%7==0)?dht:dht+7-abs(dht)%7):dht)-h_base;
f2c = sqrt(2)*(sqrt(2)-1); // fillet to chamfer ratio f2c = sqrt(2)*(sqrt(2)-1); // fillet to chamfer ratio
me = ((gridx*l_grid-0.5)/n_divx)-nozzle*4-r_fo1-12.7-4; me = ((gridx*l_grid-0.5)/n_divx)-nozzle*4-r_fo1-12.7-4;
m = min(d_tabw/1.8 + max(0,me), d_tabw/1.25); m = min(d_tabw/1.8 + max(0,me), d_tabw/1.25);
d_ramp = f2c*(l_grid*((d_height-2)/7+1)/12-r_f2)+d_wall2; d_ramp = f2c*(l_grid*((d_height-2)/7+1)/12-r_f2)+d_wall2;
d_edge = ((gridx*l_grid-0.5)/n_divx-d_tabw-r_fo1)/2; d_edge = ((gridx*l_grid-0.5)/n_divx-d_tabw-r_fo1)/2;
n_st = gridz <= 3 ? 6 : d_edge < 2 && style_tab != 0 && style_tab != 6 ? 1 : style_tab == 1 && n_divx <= 1? 0 : style_tab; n_st = gridz <= 3 ? 6 : d_edge < 2 && style_tab != 0 && style_tab != 6 ? 1 : style_tab == 1 && n_divx <= 1? 0 : style_tab;
n_x = (n_st==0?1:n_divx); n_x = (n_st==0?1:n_divx);
spacing = (gridx*l_grid-0.5)/(n_divx); spacing = (gridx*l_grid-0.5)/(n_divx);
shift = n_st==3?-1:n_st==5?1:0; shift = n_st==3?-1:n_st==5?1:0;
shiftauto = function (a,b) n_st!=2?0:a==1?-1:a==b?1:0; shiftauto = function (a,b) n_st!=2?0:a==1?-1:a==b?1:0;
xAll = function (a,b) true; xAll = function (a,b) true;
xCorner = function(a,b) (a==1||a==gridx)&&(b==1||b==gridy); xCorner = function(a,b) (a==1||a==gridx)&&(b==1||b==gridy);
xEdge = function(a,b) (a==1)||(a==gridx)||(b==1)||(b==gridy); xEdge = function(a,b) (a==1)||(a==gridx)||(b==1)||(b==gridy);
xAuto = function(a,b) xCorner(a,b) || (a%2==1 && b%2 == 1); xAuto = function(a,b) xCorner(a,b) || (a%2==1 && b%2 == 1);
xNone = function(a,b) false; xNone = function(a,b) false;
xFunc = [xAll, xCorner, xEdge, xAuto, xNone]; xFunc = [xAll, xCorner, xEdge, xAuto, xNone];
module gridfinityVase() { module gridfinityVase() {
$dh = d_height; $dh = d_height;
difference() { difference() {
union() { union() {
difference() { difference() {
block_vase_base(); block_vase_base();
if (n_st != 6) if (n_st != 6)
transform_style() transform_style()
transform_vtab_base((n_st<2?gridx*l_grid/n_x-0.5-r_fo1:d_tabw)-nozzle*4) transform_vtab_base((n_st<2?gridx*l_grid/n_x-0.5-r_fo1:d_tabw)-nozzle*4)
@ -127,12 +127,12 @@ module gridfinityVase() {
if (n_divx > 1) if (n_divx > 1)
pattern_linear(n_divx-1,1,(gridx*l_grid-0.5)/(n_divx)) pattern_linear(n_divx-1,1,(gridx*l_grid-0.5)/(n_divx))
block_divider(); block_divider();
if (n_divx < 1) if (n_divx < 1)
pattern_linear(n_st == 0 ? n_divx>1 ? n_divx-1 : gridx-1 : 1, 1, (gridx*l_grid-r_fo1)/((n_divx>1 ? n_divx : gridx))) pattern_linear(n_st == 0 ? n_divx>1 ? n_divx-1 : gridx-1 : 1, 1, (gridx*l_grid-r_fo1)/((n_divx>1 ? n_divx : gridx)))
block_tabsupport(); block_tabsupport();
} }
if (enable_funnel && gridz > 3) if (enable_funnel && gridz > 3)
pattern_linear((n_st==0?n_divx>1?n_divx:gridx:1), 1, (gridx*l_grid-r_fo1)/(n_st==0?n_divx>1?n_divx:gridx:1)) pattern_linear((n_st==0?n_divx>1?n_divx:gridx:1), 1, (gridx*l_grid-r_fo1)/(n_st==0?n_divx>1?n_divx:gridx:1))
transform_funnel() transform_funnel()
@ -146,7 +146,7 @@ module gridfinityVase() {
block_inset(); block_inset();
if (enable_pinch) if (enable_pinch)
block_pinch(); block_pinch();
if (bottom_layer <= 0) if (bottom_layer <= 0)
translate([0,0,-50+layer+0.01]) translate([0,0,-50+layer+0.01])
cube([gridx*l_grid*10,gridy*l_grid*10,100], center=true); cube([gridx*l_grid*10,gridy*l_grid*10,100], center=true);
@ -174,13 +174,13 @@ module gridfinityBaseVase() {
cube([0.001,l_grid*gridx,d_height+d_bottom*2]); cube([0.001,l_grid*gridx,d_height+d_bottom*2]);
} }
pattern_circular(4) pattern_circular(4)
intersection() { intersection() {
rotate([0,0,45]) rotate([0,0,45])
translate([-nozzle,3,-h_base+d_bottom+0.01]) translate([-nozzle,3,-h_base+d_bottom+0.01])
cube([nozzle*2,l_grid*gridx,d_height+d_bottom*2]); cube([nozzle*2,l_grid*gridx,d_height+d_bottom*2]);
block_base_blank(nozzle*4-0.1); block_base_blank(nozzle*4-0.1);
} }
if (enable_holes) if (enable_holes)
@ -190,11 +190,11 @@ module gridfinityBaseVase() {
if (enable_holes) if (enable_holes)
pattern_circular(4) pattern_circular(4)
block_magnet_blank(0, false); block_magnet_blank(0, false);
translate([0,0,h_base/2]) translate([0,0,h_base/2])
cube([l_grid*2, l_grid*2, h_base], center = true); cube([l_grid*2, l_grid*2, h_base], center = true);
} }
if (style_base != 4) if (style_base != 4)
linear_extrude(d_bottom) linear_extrude(d_bottom)
profile_x(0.1); profile_x(0.1);
@ -241,10 +241,10 @@ module block_pinch() {
mirror([1,0,0]) mirror([1,0,0])
square([10,d_height+h_base]); square([10,d_height+h_base]);
} }
translate([0,-50,0]) translate([0,-50,0])
square([100,100], center = true); square([100,100], center = true);
translate([d_wall2-nozzle*2-d_clear*2,0,0]) translate([d_wall2-nozzle*2-d_clear*2,0,0])
square(r_c2*2); square(r_c2*2);
} }
@ -254,9 +254,9 @@ module block_tabsupport() {
intersection() { intersection() {
translate([0,0,0.1]) translate([0,0,0.1])
block_vase(d_height*4); block_vase(d_height*4);
cube([nozzle*2, gridy*l_grid, d_height*3], center=true); cube([nozzle*2, gridy*l_grid, d_height*3], center=true);
transform_vtab_base(gridx*l_grid*2) transform_vtab_base(gridx*l_grid*2)
block_tab_base(-nozzle*sqrt(2)); block_tab_base(-nozzle*sqrt(2));
} }
@ -269,24 +269,24 @@ module block_divider() {
block_vase(); block_vase();
cube([nozzle*2, gridy*l_grid, d_height*2], center=true); cube([nozzle*2, gridy*l_grid, d_height*2], center=true);
} }
if (n_st == 0) block_tab(0.1); if (n_st == 0) block_tab(0.1);
else block_divider_edgecut(); else block_divider_edgecut();
// cut divider clearance on negative Y side // cut divider clearance on negative Y side
translate([-gridx*l_grid/2,-(gridy*l_grid/2-0.25),0]) translate([-gridx*l_grid/2,-(gridy*l_grid/2-0.25),0])
cube([gridx*l_grid,nozzle*2+0.1,d_height*2]); cube([gridx*l_grid,nozzle*2+0.1,d_height*2]);
// cut divider clearance on positive Y side // cut divider clearance on positive Y side
mirror([0,1,0]) mirror([0,1,0])
if (enable_scoop_chamfer) if (enable_scoop_chamfer)
translate([-gridx*l_grid/2,-(gridy*l_grid/2-0.25),0]) translate([-gridx*l_grid/2,-(gridy*l_grid/2-0.25),0])
cube([gridx*l_grid,d_wall2+0.1,d_height*2]); cube([gridx*l_grid,d_wall2+0.1,d_height*2]);
else block_divider_edgecut(); else block_divider_edgecut();
// cut divider to have clearance with scoop // cut divider to have clearance with scoop
if (enable_scoop_chamfer) if (enable_scoop_chamfer)
transform_scoop() transform_scoop()
offset(delta = 0.1) offset(delta = 0.1)
polygon([ polygon([
[0,0], [0,0],
@ -295,11 +295,11 @@ module block_divider() {
[-nozzle/sqrt(2),0] [-nozzle/sqrt(2),0]
]); ]);
} }
// divider slices // divider slices
difference() { difference() {
for (i = [0:(d_height-d_bottom)/(layer)]) { for (i = [0:(d_height-d_bottom)/(layer)]) {
if (2*i*layer < d_height-layer/2-d_bottom-0.1) if (2*i*layer < d_height-layer/2-d_bottom-0.1)
mirror([0,1,0]) mirror([0,1,0])
translate([0,(gridy*l_grid/2-0.25-nozzle)/2,layer/2+d_bottom+2*i*layer]) translate([0,(gridy*l_grid/2-0.25-nozzle)/2,layer/2+d_bottom+2*i*layer])
@ -308,9 +308,9 @@ module block_divider() {
if ((2*i+1)*layer < d_height-layer/2-d_bottom-0.1) if ((2*i+1)*layer < d_height-layer/2-d_bottom-0.1)
translate([0,(gridy*l_grid/2-0.25-nozzle)/2,layer/2+d_bottom+(2*i+1)*layer]) translate([0,(gridy*l_grid/2-0.25-nozzle)/2,layer/2+d_bottom+(2*i+1)*layer])
cube([nozzle*2-0.01,gridy*l_grid/2-0.25-nozzle,layer],center=true); cube([nozzle*2-0.01,gridy*l_grid/2-0.25-nozzle,layer],center=true);
} }
// divider slices cut to tabs // divider slices cut to tabs
if (n_st == 0) if (n_st == 0)
transform_style() transform_style()
@ -356,15 +356,15 @@ module block_vase_base() {
// base // base
translate([0,0,-h_base]) { translate([0,0,-h_base]) {
translate([0,0,-0.1]) translate([0,0,-0.1])
color("firebrick") color("firebrick")
block_bottom(d_bottom, gridx, gridy, l_grid); block_bottom(d_bottom, gridx, gridy, l_grid);
color("royalblue") color("royalblue")
block_wall(gridx, gridy, l_grid) { block_wall(gridx, gridy, l_grid) {
if (enable_lip) profile_wall(); if (enable_lip) profile_wall();
else profile_wall2(); else profile_wall2();
} }
} }
// magic slice // magic slice
rotate([0,0,90]) rotate([0,0,90])
mirror([0,1,0]) mirror([0,1,0])
@ -373,20 +373,20 @@ module block_vase_base() {
} }
// scoop piece // scoop piece
if (enable_scoop_chamfer) if (enable_scoop_chamfer)
transform_scoop() transform_scoop()
polygon([ polygon([
[0,0], [0,0],
[d_ramp,d_ramp], [d_ramp,d_ramp],
[d_ramp,d_ramp+0.6/sqrt(2)], [d_ramp,d_ramp+0.6/sqrt(2)],
[-0.6/sqrt(2),0] [-0.6/sqrt(2),0]
]); ]);
// outside tab cutter // outside tab cutter
if (n_st != 6) if (n_st != 6)
translate([-(n_x-1)*spacing/2,0,0]) translate([-(n_x-1)*spacing/2,0,0])
for (i = [1:n_x]) for (i = [1:n_x])
translate([(i-1)*spacing,0,0]) translate([(i-1)*spacing,0,0])
translate([shiftauto(i,n_x)*d_edge + shift*d_edge,0,0]) translate([shiftauto(i,n_x)*d_edge + shift*d_edge,0,0])
intersection() { intersection() {
block_vase(); block_vase();
@ -429,7 +429,7 @@ module block_inset() {
} }
} }
module block_inset_sub(x, y, ang) { module block_inset_sub(x, y, ang) {
translate([0,(gridy*l_grid-0.5)/2+r_fo1/2,0]) translate([0,(gridy*l_grid-0.5)/2+r_fo1/2,0])
mirror([0,1,0]) mirror([0,1,0])
linear_extrude(y,center=true) linear_extrude(y,center=true)
@ -452,7 +452,7 @@ module block_flushscoop() {
polygon([[0,0],[gridx*l_grid/2-r_fo1/2,0],[gridx*l_grid/2-r_fo1/2,1],[gridx*l_grid/2-r_fo1/2-r_c1*5,d_wall2-nozzle*2+1],[0,d_wall2-nozzle*2+1]]); polygon([[0,0],[gridx*l_grid/2-r_fo1/2,0],[gridx*l_grid/2-r_fo1/2,1],[gridx*l_grid/2-r_fo1/2-r_c1*5,d_wall2-nozzle*2+1],[0,d_wall2-nozzle*2+1]]);
} }
transform_scoop() transform_scoop()
polygon([[0,0],[d_ramp,0],[d_ramp,d_ramp]]); polygon([[0,0],[d_ramp,0],[d_ramp,d_ramp]]);
} }
@ -472,10 +472,10 @@ module block_tabscoop(a=m, b=0, c=0, d=-1) {
difference() { difference() {
translate([0,0,-d_tabh*sin(a_tab)*2+d_height+2.1]) translate([0,0,-d_tabh*sin(a_tab)*2+d_height+2.1])
profile_tabscoop(a); profile_tabscoop(a);
translate([-gridx*l_grid/2,-m,-m]) translate([-gridx*l_grid/2,-m,-m])
cube([gridx*l_grid,m-d_tabh*cos(a_tab)+0.005+c,d_height*20]); cube([gridx*l_grid,m-d_tabh*cos(a_tab)+0.005+c,d_height*20]);
if (d >= 0) if (d >= 0)
translate([0,0,-d_tabh*sin(a_tab)+d_height+m/2+d+2.1]) translate([0,0,-d_tabh*sin(a_tab)+d_height+m/2+d+2.1])
cube([gridx*l_grid,gridy*l_grid,m],center=true); cube([gridx*l_grid,gridy*l_grid,m],center=true);

View file

@ -1,59 +1,59 @@
// height of the base // height of the base
h_base = 5; h_base = 5;
// outside rounded radius of bin // outside rounded radius of bin
r_base = 4; r_base = 4;
// lower base chamfer "radius" // lower base chamfer "radius"
r_c1 = 0.8; r_c1 = 0.8;
// upper base chamfer "radius" // upper base chamfer "radius"
r_c2 = 2.4; r_c2 = 2.4;
// bottom thiccness of bin // bottom thiccness of bin
h_bot = 2.2; h_bot = 2.2;
// outside radii 1 // outside radii 1
r_fo1 = 8.5; r_fo1 = 8.5;
// outside radii 2 // outside radii 2
r_fo2 = 3.2; r_fo2 = 3.2;
// outside radii 3 // outside radii 3
r_fo3 = 1.6; r_fo3 = 1.6;
// length of a grid unit // length of a grid unit
l_grid = 42; l_grid = 42;
// screw hole radius // screw hole radius
r_hole1 = 1.5; r_hole1 = 1.5;
// magnet hole radius // magnet hole radius
r_hole2 = 3.25; r_hole2 = 3.25;
// center-to-center distance between holes // center-to-center distance between holes
d_hole = 26; d_hole = 26;
// distance of hole from side of bin // distance of hole from side of bin
d_hole_from_side=8; d_hole_from_side=8;
// magnet hole depth // magnet hole depth
h_hole = 2.4; h_hole = 2.4;
// slit depth (printer layer height) // slit depth (printer layer height)
h_slit = 0.2; h_slit = 0.2;
// top edge fillet radius // top edge fillet radius
r_f1 = 0.6; r_f1 = 0.6;
// internal fillet radius // internal fillet radius
r_f2 = 2.8; r_f2 = 2.8;
// width of divider between compartments // width of divider between compartments
d_div = 1.2; d_div = 1.2;
// minimum wall thickness // minimum wall thickness
d_wall = 0.95; d_wall = 0.95;
// tolerance fit factor // tolerance fit factor
d_clear = 0.25; d_clear = 0.25;
// height of tab (yaxis, measured from inner wall) // height of tab (yaxis, measured from inner wall)
d_tabh = 15.85; d_tabh = 15.85;
// maximum width of tab // maximum width of tab
d_tabw = 42; d_tabw = 42;
// angle of tab // angle of tab
a_tab = 36; a_tab = 36;
// lip height // lip height
h_lip = 3.548; h_lip = 3.548;
d_wall2 = r_base-r_c1-d_clear*sqrt(2); d_wall2 = r_base-r_c1-d_clear*sqrt(2);
d_magic = -2*d_clear-2*d_wall+d_div; d_magic = -2*d_clear-2*d_wall+d_div;
// Baseplate constants // Baseplate constants
@ -72,12 +72,12 @@ bp_rcut_depth = 2;
// Baseplate clearence offset // Baseplate clearence offset
bp_xy_clearence = 0.5; bp_xy_clearence = 0.5;
// countersink diameter for baseplate // countersink diameter for baseplate
d_cs = 2.5; d_cs = 2.5;
// radius of cutout for skeletonized baseplate // radius of cutout for skeletonized baseplate
r_skel = 2; r_skel = 2;
// baseplate counterbore radius // baseplate counterbore radius
r_cb = 2.75; r_cb = 2.75;
// baseplate counterbore depth // baseplate counterbore depth
h_cb = 3; h_cb = 3;
// minimum baseplate thickness (when skeletonized) // minimum baseplate thickness (when skeletonized)
h_skel = 1; h_skel = 1;