/** * @file gridfinity-rebuilt-holes.scad * @brief Functions to create different types of holes in an object. */ include use /** * @brief Wave generation function for wrapping a circle. * @param t An angle of the circle. Between 0 and 360 degrees. * @param count The number of **full** waves in a 360 degree circle. * @param range **Half** the difference between minimum and maximum values. * @param vertical_offset A simple offset. * @details * If plotted on an x/y graph this produces a standard sin wave. * Range only seems weird because it describes half a wave. * Mapped by doing [sin(t), cost(t)] * wave_function(...). * When wrapping a circle: * Final Outer radius is (wave_vertical_offset + wave_range). * Final Inner radius is (wave_vertical_offset - wave_range). */ function wave_function(t, count, range, vertical_offset) = (sin(t * count) * range) + vertical_offset; /** * @brief A circle with crush ribs to give a tighter press fit. * @details Extrude and use as a negative modifier. * Idea based on Slant3D's video at 5:20 https://youtu.be/Bd7Yyn61XWQ?t=320 * Implementaiton is completely different. * Important: Lower ribs numbers just result in a deformed circle. * @param outer_radius Final outer radius. * @param inner_radius Final inner radius. * @param ribs Number of crush ribs the circle has. **/ module ribbed_circle(outer_radius, inner_radius, ribs) { assert(outer_radius > 0, "outer_radius must be positive"); assert(inner_radius > 0, "inner_radius must be positive"); assert(ribs > 0, "ribs must be positive"); assert(outer_radius > inner_radius, "outer_radius must be larger than inner_radius"); wave_range = (outer_radius - inner_radius) / 2; wave_vertical_offset = inner_radius + wave_range; // Circe with a wave wrapped around it wrapped_circle = [ for (i = [0:360]) [sin(i), cos(i)] * wave_function(i, ribs, wave_range, wave_vertical_offset) ]; polygon(wrapped_circle); } /** * @brief A cylinder with crush ribs to give a tighter press fit. * @details To be used as the negative for a hole. * @see ribbed_circle * @param outer_radius Outer Radius of the crush ribs. * @param inner_radius Inner Radius of the crush ribs. * @param height Cylinder's height. * @param ribs Number of crush ribs. */ module ribbed_cylinder(outer_radius, inner_radius, height, ribs) { assert(height > 0, "height must be positive"); linear_extrude(height) ribbed_circle( outer_radius, inner_radius, ribs ); } /** * @brief Make a magnet hole printable without suports. * @see https://www.youtube.com/watch?v=W8FbHTcB05w * @param screw_radius Radius of the screw hole. * @param magnet_radius Radius of the magnet hole. * @param magnet_depth Depth of the magnet hole. * @details This is the negative designed to be cut out of the magnet hole. * Use it with `difference()`. */ module make_magnet_hole_printable(screw_radius, magnet_radius, magnet_depth) { copy_mirror([0,1,0]) { translate([-1.5*magnet_radius, screw_radius+0.1, magnet_depth - LAYER_HEIGHT]) cube([magnet_radius*3, magnet_radius*3, 10]); } } /** * @brief Refined hole based on Printables @grizzie17's Gridfinity Refined * @details Magnet is pushed in from +X direction, and held in by friction. * Small slit on the bottom allows removing the magnet. * @see https://www.printables.com/model/413761-gridfinity-refined */ module refined_hole() { refined_offset = LAYER_HEIGHT * REFINED_HOLE_BOTTOM_LAYERS; // Poke through - For removing a magnet using a toothpick ptl = refined_offset + LAYER_HEIGHT; // Additional layer just in case poke_through_height = REFINED_HOLE_HEIGHT + ptl; poke_hole_radius = 2.5; magic_constant = 5.60; poke_hole_center = [-12.53 + magic_constant, 0, -ptl]; translate([0, 0, refined_offset]) union() { // Magnet hole translate([0, -REFINED_HOLE_RADIUS, 0]) cube([11, REFINED_HOLE_RADIUS*2, REFINED_HOLE_HEIGHT]); cylinder(REFINED_HOLE_HEIGHT, r=REFINED_HOLE_RADIUS); // Poke hole translate([poke_hole_center.x, -poke_hole_radius/2, poke_hole_center.z]) cube([10 - magic_constant, poke_hole_radius, poke_through_height]); translate(poke_hole_center) cylinder(poke_through_height, d=poke_hole_radius); } } /** * @brief Create a cone given a radius and an angle. * @param bottom_radius Radius of the bottom of the cone. * @param angle Angle as measured from the bottom of the cone. * @param max_height Optional maximum height. Cone will be cut off if higher. */ module cone(bottom_radius, angle, max_height=0) { assert(bottom_radius > 0); assert(angle > 0 && angle <= 90); assert(max_height >=0); height = tan(angle) * bottom_radius; if(max_height == 0 || height < max_height) { // Normal Cone cylinder(h = height, r1 = bottom_radius, r2 = 0, center = false); } else { top_angle = 90 - angle; top_radius = bottom_radius - tan(top_angle) * max_height; cylinder(h = max_height, r1 = bottom_radius, r2 = top_radius, center = false); } } /** * @brief Create an options list used to configure bin holes. * @param refined_hole Use gridfinity refined hole type. Not compatible with "magnet_hole". * @param magnet_hole Create a hole for a 6mm magnet. * @param screw_hole Create a hole for a M3 screw. * @param crush_ribs If the magnet hole should have crush ribs for a press fit. * @param chamfer Add a chamfer to the magnet hole. * @param supportless If the magnet hole should be printed in such a way that the screw hole does not require supports. */ function bundle_hole_options(refined_hole=true, magnet_hole=false, screw_hole=false, crush_ribs=false, chamfer=false, supportless=false) = [refined_hole, magnet_hole, screw_hole, crush_ribs, chamfer, supportless]; /** * @brief A single magnet/screw hole. To be cut out of the base. * @details Supports multiple options that can be mixed and matched. * @pram hole_options @see bundle_hole_options * @param o Offset */ module block_base_hole(hole_options, o=0) { // Destructure the options refined_hole = hole_options[0]; magnet_hole = hole_options[1]; screw_hole = hole_options[2]; crush_ribs = hole_options[3]; chamfer = hole_options[4]; supportless = hole_options[5]; // Validate said options if(refined_hole) { assert(!magnet_hole, "magnet_hole is not compatible with refined_hole"); } screw_radius = SCREW_HOLE_RADIUS - (o/2); magnet_radius = MAGNET_HOLE_RADIUS - (o/2); magnet_inner_radius = MAGNET_HOLE_CRUSH_RIB_INNER_RADIUS - (o/2); screw_depth = h_base-o; // If using supportless / printable mode, need to add an additional layer, so it can be removed later magnet_depth = MAGNET_HOLE_DEPTH - o + (supportless ? LAYER_HEIGHT : 0); union() { if(refined_hole) { refined_hole(); } if(magnet_hole) { difference() { if(crush_ribs) { ribbed_cylinder(magnet_radius, magnet_inner_radius, magnet_depth, MAGNET_HOLE_CRUSH_RIB_COUNT); } else { cylinder(h = magnet_depth, r=magnet_radius); } if(supportless) { make_magnet_hole_printable(screw_radius, magnet_radius, magnet_depth); } } if(chamfer) { cone(magnet_radius + MAGNET_HOLE_CHAMFER_ADDITIONAL_RADIUS, MAGNET_HOLE_CHAMFER_ANGLE, magnet_depth); } } if(screw_hole) { cylinder(h = screw_depth, r = screw_radius); } } } //$fa = 8; //$fs = 0.25; //block_base_hole(bundle_hole_options( // refined_hole=false, // magnet_hole=true, // screw_hole=true, // supportless=true, // crush_ribs=true, // chamfer=true //));