gridfinity-rebuilt-openscad/gridfinity-rebuilt-holes.scad
2024-04-24 21:22:56 -04:00

261 lines
9.3 KiB
OpenSCAD

/**
* @file gridfinity-rebuilt-holes.scad
* @brief Functions to create different types of holes in an object.
*/
include <standard.scad>
use <generic-helpers.scad>
/**
* @brief Wave generation function for wrapping a circle.
* @param t An angle of the circle. Between 0 and 360 degrees.
* @param count The number of **full** waves in a 360 degree circle.
* @param range **Half** the difference between minimum and maximum values.
* @param vertical_offset A simple offset.
* @details
* If plotted on an x/y graph this produces a standard sin wave.
* Range only seems weird because it describes half a wave.
* Mapped by doing [sin(t), cost(t)] * wave_function(...).
* When wrapping a circle:
* Final Outer radius is (wave_vertical_offset + wave_range).
* Final Inner radius is (wave_vertical_offset - wave_range).
*/
function wave_function(t, count, range, vertical_offset) =
(sin(t * count) * range) + vertical_offset;
/**
* @brief A circle with crush ribs to give a tighter press fit.
* @details Extrude and use as a negative modifier.
* Idea based on Slant3D's video at 5:20 https://youtu.be/Bd7Yyn61XWQ?t=320
* Implementaiton is completely different.
* Important: Lower ribs numbers just result in a deformed circle.
* @param outer_radius Final outer radius.
* @param inner_radius Final inner radius.
* @param ribs Number of crush ribs the circle has.
**/
module ribbed_circle(outer_radius, inner_radius, ribs) {
assert(outer_radius > 0, "outer_radius must be positive");
assert(inner_radius > 0, "inner_radius must be positive");
assert(ribs > 0, "ribs must be positive");
assert(outer_radius > inner_radius, "outer_radius must be larger than inner_radius");
wave_range = (outer_radius - inner_radius) / 2;
wave_vertical_offset = inner_radius + wave_range;
// Circe with a wave wrapped around it
wrapped_circle = [ for (i = [0:360])
[sin(i), cos(i)] * wave_function(i, ribs, wave_range, wave_vertical_offset)
];
polygon(wrapped_circle);
}
/**
* @brief A cylinder with crush ribs to give a tighter press fit.
* @details To be used as the negative for a hole.
* @see ribbed_circle
* @param outer_radius Outer Radius of the crush ribs.
* @param inner_radius Inner Radius of the crush ribs.
* @param height Cylinder's height.
* @param ribs Number of crush ribs.
*/
module ribbed_cylinder(outer_radius, inner_radius, height, ribs) {
assert(height > 0, "height must be positive");
linear_extrude(height)
ribbed_circle(
outer_radius,
inner_radius,
ribs
);
}
/**
* @brief Make a hole printable without suports.
* @see https://www.youtube.com/watch?v=W8FbHTcB05w
* @param inner_radius Radius of the inner hole.
* @param outer_radius Radius of the outer hole.
* @param outer_depth Depth of the magnet hole.
* @details This is the negative designed to be cut out of the magnet hole.
* Use it with `difference()`.
*/
module make_hole_printable(inner_radius, outer_radius, outer_depth) {
assert(inner_radius > 0, "inner_radius must be positive");
assert(outer_radius > 0, "outer_radius must be positive");
assert(outer_depth > 2*LAYER_HEIGHT, str("outer_depth must be at least ", 2*LAYER_HEIGHT));
tollerance = 0.001; // To make sure the top layer is fully removed
translation_matrix = affine_translate([
-outer_radius,
inner_radius,
outer_depth - 2*LAYER_HEIGHT
]);
second_translation_matrix = translation_matrix * affine_translate([0, 0, LAYER_HEIGHT]);
cube_dimensions = [
outer_radius*2,
outer_radius - inner_radius,
LAYER_HEIGHT + tollerance
];
union(){
union() {
multmatrix(translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 180]) * translation_matrix)
cube(cube_dimensions);
}
// 2nd level
union() {
multmatrix(second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 90]) * second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 180]) * second_translation_matrix)
cube(cube_dimensions);
multmatrix(affine_rotate([0, 0, 270]) * second_translation_matrix)
cube(cube_dimensions);
}
}
}
/**
* @brief Refined hole based on Printables @grizzie17's Gridfinity Refined
* @details Magnet is pushed in from +X direction, and held in by friction.
* Small slit on the bottom allows removing the magnet.
* @see https://www.printables.com/model/413761-gridfinity-refined
*/
module refined_hole() {
refined_offset = LAYER_HEIGHT * REFINED_HOLE_BOTTOM_LAYERS;
// Poke through - For removing a magnet using a toothpick
ptl = refined_offset + LAYER_HEIGHT; // Additional layer just in case
poke_through_height = REFINED_HOLE_HEIGHT + ptl;
poke_hole_radius = 2.5;
magic_constant = 5.60;
poke_hole_center = [-12.53 + magic_constant, 0, -ptl];
translate([0, 0, refined_offset])
union() {
// Magnet hole
translate([0, -REFINED_HOLE_RADIUS, 0])
cube([11, REFINED_HOLE_RADIUS*2, REFINED_HOLE_HEIGHT]);
cylinder(REFINED_HOLE_HEIGHT, r=REFINED_HOLE_RADIUS);
// Poke hole
translate([poke_hole_center.x, -poke_hole_radius/2, poke_hole_center.z])
cube([10 - magic_constant, poke_hole_radius, poke_through_height]);
translate(poke_hole_center)
cylinder(poke_through_height, d=poke_hole_radius);
}
}
/**
* @brief Create a cone given a radius and an angle.
* @param bottom_radius Radius of the bottom of the cone.
* @param angle Angle as measured from the bottom of the cone.
* @param max_height Optional maximum height. Cone will be cut off if higher.
*/
module cone(bottom_radius, angle, max_height=0) {
assert(bottom_radius > 0);
assert(angle > 0 && angle <= 90);
assert(max_height >=0);
height = tan(angle) * bottom_radius;
if(max_height == 0 || height < max_height) {
// Normal Cone
cylinder(h = height, r1 = bottom_radius, r2 = 0, center = false);
} else {
top_angle = 90 - angle;
top_radius = bottom_radius - tan(top_angle) * max_height;
cylinder(h = max_height, r1 = bottom_radius, r2 = top_radius, center = false);
}
}
/**
* @brief Create an options list used to configure bin holes.
* @param refined_hole Use gridfinity refined hole type. Not compatible with "magnet_hole".
* @param magnet_hole Create a hole for a 6mm magnet.
* @param screw_hole Create a hole for a M3 screw.
* @param crush_ribs If the magnet hole should have crush ribs for a press fit.
* @param chamfer Add a chamfer to the magnet hole.
* @param supportless If the magnet hole should be printed in such a way that the screw hole does not require supports.
*/
function bundle_hole_options(refined_hole=true, magnet_hole=false, screw_hole=false, crush_ribs=false, chamfer=false, supportless=false) =
[refined_hole, magnet_hole, screw_hole, crush_ribs, chamfer, supportless];
/**
* @brief A single magnet/screw hole. To be cut out of the base.
* @details Supports multiple options that can be mixed and matched.
* @pram hole_options @see bundle_hole_options
* @param o Offset
*/
module block_base_hole(hole_options, o=0) {
// Destructure the options
refined_hole = hole_options[0];
magnet_hole = hole_options[1];
screw_hole = hole_options[2];
crush_ribs = hole_options[3];
chamfer = hole_options[4];
supportless = hole_options[5];
// Validate said options
if(refined_hole) {
assert(!magnet_hole, "magnet_hole is not compatible with refined_hole");
}
screw_radius = SCREW_HOLE_RADIUS - (o/2);
magnet_radius = MAGNET_HOLE_RADIUS - (o/2);
magnet_inner_radius = MAGNET_HOLE_CRUSH_RIB_INNER_RADIUS - (o/2);
screw_depth = h_base-o;
// If using supportless / printable mode, need to add two additional layers, so they can be removed later.
supportless_additional_depth = 2* LAYER_HEIGHT;
magnet_depth = MAGNET_HOLE_DEPTH - o +
(supportless ? supportless_additional_depth : 0);
union() {
if(refined_hole) {
refined_hole();
}
if(magnet_hole) {
difference() {
if(crush_ribs) {
ribbed_cylinder(magnet_radius, magnet_inner_radius, magnet_depth, MAGNET_HOLE_CRUSH_RIB_COUNT);
} else {
cylinder(h = magnet_depth, r=magnet_radius);
}
if(supportless) {
make_hole_printable(screw_radius, magnet_radius, magnet_depth);
}
}
if(chamfer) {
cone(magnet_radius + MAGNET_HOLE_CHAMFER_ADDITIONAL_RADIUS, MAGNET_HOLE_CHAMFER_ANGLE, magnet_depth);
}
}
if(screw_hole) {
difference() {
cylinder(h = screw_depth, r = screw_radius);
if(supportless) {
rotate([0, 0, 90])
make_hole_printable(screw_radius/2, screw_radius, screw_depth);
}
}
}
}
}
//$fa = 8;
//$fs = 0.25;
//block_base_hole(bundle_hole_options(
// refined_hole=false,
// magnet_hole=true,
// screw_hole=true,
// supportless=true,
// crush_ribs=true,
// chamfer=true
//));