gridfinity-rebuilt-openscad/gridfinity-rebuilt-baseplat...

147 lines
4.2 KiB
OpenSCAD

include <gridfinity-rebuilt-utility.scad>
// ===== INFORMATION ===== //
/*
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
https://github.com/kennetek/gridfinity-rebuilt-openscad
*/
// ===== PARAMETERS ===== //
/* [Setup Parameters] */
$fa = 8;
$fs = 0.25;
/* [General Settings] */
// number of bases along x-axis
gridx = 4;
// number of bases along y-axis
gridy = 4;
// base unit
length = 42;
/* [Fit to Drawer] */
// minimum length of baseplate along x (leave zero to ignore, will automatically fill area if gridx is zero)
distancex = 0;
// minimum length of baseplate along y (leave zero to ignore, will automatically fill area if gridy is zero)
distancey = 0;
/* [Styles] */
// baseplate styles
style_plate = 2; // [0: thin, 1:weighted, 2:skeletonized]
// enable magnet hole
enable_magnet = true;
// hole styles
style_hole = 2; // [0:none, 1:contersink, 2:counterbore]
// ===== IMPLEMENTATION ===== //
color("tomato")
gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole);
// ===== CONSTRUCTION ===== //
module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh) {
assert(gridx > 0 || dx > 0, "Must have positive x grid amount!");
assert(gridy > 0 || dy > 0, "Must have positive y grid amount!");
gx = gridx == 0 ? floor(dix/length) : gridx;
gy = gridy == 0 ? floor(diy/length) : gridy;
dx = max(gx*length-0.5, dix);
dy = max(gy*length-0.5, diy);
off = (sp==0?0:sp==1?bp_h_bot:h_skel+(sm?h_hole:0)+(sh==0?0:sh==1?d_cs:h_cb));
difference() {
translate([0,0,h_base])
mirror([0,0,1])
rounded_rectangle(dx, dy, h_base+off, r_base);
gridfinityBase(gx, gy, length, 1, 1, 0, 0.5, false);
translate([0,0,h_base-0.6])
rounded_rectangle(dx*2, dy*2, h_base*2, r_base);
pattern_linear(gx, gy, length) {
if (sm) block_base_hole(1);
if (sp == 1)
translate([0,0,-off])
cutter_weight();
else if (sp == 2)
linear_extrude(10*(h_base+off), center = true)
profile_skeleton();
translate([0,0,-off]) {
if (sh == 1) cutter_countersink();
else if (sh == 2) cutter_counterbore();
}
}
}
}
module cutter_weight() {
union() {
linear_extrude(bp_cut_depth*2,center=true)
square(bp_cut_size, center=true);
pattern_circular(4)
translate([0,10,0])
linear_extrude(bp_rcut_depth*2,center=true)
union() {
square([bp_rcut_width, bp_rcut_length], center=true);
translate([0,bp_rcut_length/2,0])
circle(d=bp_rcut_width);
}
}
}
module cutter_countersink() {
pattern_circular(4)
translate([d_hole/2, d_hole/2, 0]) {
cylinder(r = r_hole1+d_clear, h = 100*h_base, center = true);
translate([0,0,d_cs])
mirror([0,0,1])
hull() {
cylinder(h = d_cs+10, r=r_hole1+d_clear);
translate([0,0,d_cs])
cylinder(h=d_cs+10, r=r_hole1+d_clear+d_cs);
}
}
}
module cutter_counterbore() {
pattern_circular(4)
translate([d_hole/2,d_hole/2,0]) {
cylinder(h=100*h_base, r=r_hole1+d_clear, center=true);
difference() {
cylinder(h = 2*(h_cb+0.2), r=r_cb, center=true);
copy_mirror([0,1,0])
translate([-1.5*r_cb,r_hole1+d_clear+0.1,h_cb-h_slit])
cube([r_cb*3,r_cb*3, 10]);
}
}
}
module profile_skeleton() {
l = length-2*r_c2-2*r_c1;
minkowski() {
difference() {
square([l-2*r_skel+2*d_clear,l-2*r_skel+2*d_clear], center = true);
pattern_circular(4)
translate([d_hole/2,d_hole/2,0])
minkowski() {
square([l,l]);
circle(r_hole2+r_skel+2);
}
}
circle(r_skel);
}
}