mirror of
https://github.com/kennetek/gridfinity-rebuilt-openscad.git
synced 2024-11-10 10:30:51 +00:00
145 lines
No EOL
4.2 KiB
OpenSCAD
145 lines
No EOL
4.2 KiB
OpenSCAD
include <gridfinity-rebuilt-utility.scad>
|
|
|
|
// ===== Info ===== //
|
|
/*
|
|
IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg
|
|
|
|
https://github.com/kennetek/gridfinity-rebuilt-openscad
|
|
|
|
*/
|
|
|
|
/* [Setup Parameters] */
|
|
$fa = 8;
|
|
$fs = 0.25;
|
|
|
|
/* [General Settings] */
|
|
// number of bases along x-axis
|
|
gridx = 2;
|
|
// number of bases along y-axis
|
|
gridy = 2;
|
|
// base unit
|
|
length = 42;
|
|
|
|
/* [Fit to Drawer] */
|
|
// minimum length of baseplate along x (leave zero to ignore, will automatically fill area if gridx is zero)
|
|
distancex = 0;
|
|
// minimum length of baseplate along y (leave zero to ignore, will automatically fill area if gridy is zero)
|
|
distancey = 0;
|
|
|
|
/* [Styles] */
|
|
|
|
// baseplate styles
|
|
style_plate = 1; // [0: thin, 1:weighted, 2:skeletonized]
|
|
|
|
// enable magnet hole
|
|
enable_magnet = true;
|
|
|
|
// hole styles
|
|
style_hole = 1; // [0:none, 1:contersink, 2:counterbore]
|
|
|
|
|
|
// ===== Commands ===== //
|
|
|
|
color("tomato")
|
|
gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole);
|
|
|
|
|
|
|
|
// ===== Construction ===== //
|
|
|
|
module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh) {
|
|
|
|
assert(gridx > 0 || dx > 0, "Must have positive x grid amount!");
|
|
assert(gridy > 0 || dy > 0, "Must have positive y grid amount!");
|
|
gx = gridx == 0 ? floor(dix/length) : gridx;
|
|
gy = gridy == 0 ? floor(diy/length) : gridy;
|
|
dx = max(gx*length-0.5, dix);
|
|
dy = max(gy*length-0.5, diy);
|
|
off = (sp==0?0:sp==1?bp_h_bot:h_skel+(sm?h_hole:0)+(sh==0?0:sh==1?d_cs:h_cb));
|
|
|
|
difference() {
|
|
translate([0,0,h_base])
|
|
mirror([0,0,1])
|
|
rounded_rectangle(dx, dy, h_base+off, r_base);
|
|
|
|
gridfinityBase(gx, gy, length, 1, 1, 0, 0.5, false);
|
|
|
|
translate([0,0,h_base-0.6])
|
|
rounded_rectangle(dx*2, dy*2, h_base*2, r_base);
|
|
|
|
pattern_linear(gx, gy, length) {
|
|
if (sm) block_base_hole(1);
|
|
|
|
if (sp == 1)
|
|
translate([0,0,-off])
|
|
cutter_weight();
|
|
else if (sp == 2)
|
|
linear_extrude(10*(h_base+off), center = true)
|
|
profile_skeleton();
|
|
|
|
translate([0,0,-off]) {
|
|
if (sh == 1) cutter_countersink();
|
|
else if (sh == 2) cutter_counterbore();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module cutter_weight(){
|
|
union() {
|
|
linear_extrude(bp_cut_depth*2,center=true)
|
|
square(bp_cut_size, center=true);
|
|
pattern_circular(4)
|
|
translate([0,10,0])
|
|
linear_extrude(bp_rcut_depth*2,center=true)
|
|
union() {
|
|
square([bp_rcut_width, bp_rcut_length], center=true);
|
|
translate([0,bp_rcut_length/2,0])
|
|
circle(d=bp_rcut_width);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cutter_countersink() {
|
|
pattern_circular(4)
|
|
translate([d_hole/2, d_hole/2, 0]) {
|
|
cylinder(r = r_hole1+d_clear, h = 100*h_base, center = true);
|
|
|
|
translate([0,0,d_cs])
|
|
mirror([0,0,1])
|
|
hull() {
|
|
cylinder(h = d_cs+10, r=r_hole1+d_clear);
|
|
translate([0,0,d_cs])
|
|
cylinder(h=d_cs+10, r=r_hole1+d_clear+d_cs);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cutter_counterbore() {
|
|
pattern_circular(4)
|
|
translate([d_hole/2,d_hole/2,0]) {
|
|
cylinder(h=100*h_base, r=r_hole1+d_clear, center=true);
|
|
difference() {
|
|
cylinder(h = 2*(h_cb+0.2), r=r_cb, center=true);
|
|
copy_mirror([0,1,0])
|
|
translate([-1.5*r_cb,r_hole1+0.1,h_cb])
|
|
cube([r_cb*3,r_cb*3, 0.4]);
|
|
}
|
|
}
|
|
}
|
|
|
|
module profile_skeleton() {
|
|
l = length-2*r_c2-2*r_c1;
|
|
minkowski() {
|
|
difference() {
|
|
square([l-2*r_skel+2*d_clear,l-2*r_skel+2*d_clear], center = true);
|
|
pattern_circular(4)
|
|
translate([d_hole/2,d_hole/2,0])
|
|
minkowski() {
|
|
square([l,l]);
|
|
circle(r_hole2+r_skel+2);
|
|
}
|
|
}
|
|
circle(r_skel);
|
|
}
|
|
} |