include // ===== INFORMATION ===== // /* IMPORTANT: rendering will be better for analyzing the model if fast-csg is enabled. As of writing, this feature is only available in the development builds and not the official release of OpenSCAD, but it makes rendering only take a couple seconds, even for comically large bins. Enable it in Edit > Preferences > Features > fast-csg https://github.com/kennetek/gridfinity-rebuilt-openscad */ // ===== PARAMETERS ===== // /* [Setup Parameters] */ $fa = 8; $fs = 0.25; /* [General Settings] */ // number of bases along x-axis gridx = 4; // number of bases along y-axis gridy = 4; // base unit length = 42; /* [Fit to Drawer] */ // minimum length of baseplate along x (leave zero to ignore, will automatically fill area if gridx is zero) distancex = 0; // minimum length of baseplate along y (leave zero to ignore, will automatically fill area if gridy is zero) distancey = 0; /* [Styles] */ // baseplate styles style_plate = 2; // [0: thin, 1:weighted, 2:skeletonized] // enable magnet hole enable_magnet = true; // hole styles style_hole = 2; // [0:none, 1:contersink, 2:counterbore] // ===== IMPLEMENTATION ===== // color("tomato") gridfinityBaseplate(gridx, gridy, length, distancex, distancey, style_plate, enable_magnet, style_hole); // ===== CONSTRUCTION ===== // module gridfinityBaseplate(gridx, gridy, length, dix, diy, sp, sm, sh) { assert(gridx > 0 || dx > 0, "Must have positive x grid amount!"); assert(gridy > 0 || dy > 0, "Must have positive y grid amount!"); gx = gridx == 0 ? floor(dix/length) : gridx; gy = gridy == 0 ? floor(diy/length) : gridy; dx = max(gx*length-0.5, dix); dy = max(gy*length-0.5, diy); off = (sp==0?0:sp==1?bp_h_bot:h_skel+(sm?h_hole:0)+(sh==0?0:sh==1?d_cs:h_cb)); difference() { translate([0,0,h_base]) mirror([0,0,1]) rounded_rectangle(dx, dy, h_base+off, r_base); gridfinityBase(gx, gy, length, 1, 1, 0, 0.5, false); translate([0,0,h_base-0.6]) rounded_rectangle(dx*2, dy*2, h_base*2, r_base); pattern_linear(gx, gy, length) { if (sm) block_base_hole(1); if (sp == 1) translate([0,0,-off]) cutter_weight(); else if (sp == 2) linear_extrude(10*(h_base+off), center = true) profile_skeleton(); translate([0,0,-off]) { if (sh == 1) cutter_countersink(); else if (sh == 2) cutter_counterbore(); } } } } module cutter_weight() { union() { linear_extrude(bp_cut_depth*2,center=true) square(bp_cut_size, center=true); pattern_circular(4) translate([0,10,0]) linear_extrude(bp_rcut_depth*2,center=true) union() { square([bp_rcut_width, bp_rcut_length], center=true); translate([0,bp_rcut_length/2,0]) circle(d=bp_rcut_width); } } } module cutter_countersink() { pattern_circular(4) translate([d_hole/2, d_hole/2, 0]) { cylinder(r = r_hole1+d_clear, h = 100*h_base, center = true); translate([0,0,d_cs]) mirror([0,0,1]) hull() { cylinder(h = d_cs+10, r=r_hole1+d_clear); translate([0,0,d_cs]) cylinder(h=d_cs+10, r=r_hole1+d_clear+d_cs); } } } module cutter_counterbore() { pattern_circular(4) translate([d_hole/2,d_hole/2,0]) { cylinder(h=100*h_base, r=r_hole1+d_clear, center=true); difference() { cylinder(h = 2*(h_cb+0.2), r=r_cb, center=true); copy_mirror([0,1,0]) translate([-1.5*r_cb,r_hole1+d_clear+0.1,h_cb-h_slit]) cube([r_cb*3,r_cb*3, 10]); } } } module profile_skeleton() { l = length-2*r_c2-2*r_c1; minkowski() { difference() { square([l-2*r_skel+2*d_clear,l-2*r_skel+2*d_clear], center = true); pattern_circular(4) translate([d_hole/2,d_hole/2,0]) minkowski() { square([l,l]); circle(r_hole2+r_skel+2); } } circle(r_skel); } }