* Google Cloud Platform: This tutorial leverages the [Google Cloud Platform](https://cloud.google.com/) to streamline provisioning of the compute infrastructure required to bootstrap a Kubernetes cluster from the ground up. [Sign up](https://cloud.google.com/free/) for $300 in free credits.
* Google Cloud Platform SDK: Follow the Google Cloud SDK [documentation](https://cloud.google.com/sdk/) to install and configure the `gcloud` command
line utility. Make sure to set a default compute region and compute zone.
* The [kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/) command line utility is used to interact with the Kubernetes
API Server.
* Linux or Mac environment with Python 3
## Provisioning Compute Resources
Kubernetes requires a set of machines to host the Kubernetes control plane and the worker nodes where containers are ultimately run. In this lab you will provision the compute resources required for running a secure and highly available Kubernetes cluster across a single [compute zone](https://cloud.google.com/compute/docs/regions-zones/regions-zones).
### Networking
The Kubernetes [networking model](https://kubernetes.io/docs/concepts/cluster-administration/networking/#kubernetes-model) assumes a flat network in which containers and nodes can communicate with each other. In cases where this is not desired [network policies](https://kubernetes.io/docs/concepts/services-networking/network-policies/) can limit how groups of containers are allowed to communicate with each other and external network endpoints.
> Setting up network policies is out of scope for this tutorial.
#### Virtual Private Cloud Network
In this section a dedicated [Virtual Private Cloud](https://cloud.google.com/compute/docs/networks-and-firewalls#networks) (VPC) network will be setup to host the Kubernetes cluster.
Create the `kubernetes-the-kubespray-way` custom VPC network:
A [subnet](https://cloud.google.com/compute/docs/vpc/#vpc_networks_and_subnets) must be provisioned with an IP address range large enough to assign a private IP address to each node in the Kubernetes cluster.
Kubespray is relying on SSH to configure the controller and worker instances.
Test SSH access to the `controller-0` compute instance:
```ShellSession
IP_CONTROLLER_0=$(gcloud compute instances list --filter="tags.items=kubernetes-the-kubespray-way AND name:controller-0" --format="value(EXTERNAL_IP)")
USERNAME=$(whoami)
ssh $USERNAME@$IP_CONTROLLER_0
```
If this is your first time connecting to a compute instance SSH keys will be
generated for you. In this case you will need to enter a passphrase at the
prompt to continue.
> If you get a 'Remote host identification changed!' warning, you probably
already connected to that IP address in the past with another host key. You
can remove the old host key by running `ssh-keygen -R $IP_CONTROLLER_0`
Please repeat this procedure for all the controller and worker nodes, to
ensure that SSH access is properly functioning for all nodes.
## Set-up Kubespray
The following set of instruction is based on the [Quick Start](https://github.com/kubernetes-sigs/kubespray) but slightly altered for our
set-up.
As Ansible is a python application, we will create a fresh virtual
environment to install the dependencies for the Kubespray playbook:
```ShellSession
python3 -m venv venv
source venv/bin/activate
```
Next, we will git clone the Kubespray code into our working directory:
kubectl run myshell2 -it --rm --image busybox -- sh
hostname -i
ping <hostnamemyshell1>
```
> Output
```ShellSession
PING 10.233.108.2 (10.233.108.2): 56 data bytes
64 bytes from 10.233.108.2: seq=0 ttl=62 time=2.876 ms
64 bytes from 10.233.108.2: seq=1 ttl=62 time=0.398 ms
64 bytes from 10.233.108.2: seq=2 ttl=62 time=0.378 ms
^C
--- 10.233.108.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.378/1.217/2.876 ms
```
### Deployments
In this section you will verify the ability to create and manage [Deployments](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/).
Create a deployment for the [nginx](https://nginx.org/en/) web server:
```ShellSession
kubectl create deployment nginx --image=nginx
```
List the pod created by the `nginx` deployment:
```ShellSession
kubectl get pods -l app=nginx
```
> Output
```ShellSession
NAME READY STATUS RESTARTS AGE
nginx-86c57db685-bmtt8 1/1 Running 0 18s
```
#### Port Forwarding
In this section you will verify the ability to access applications remotely using [port forwarding](https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/).
Retrieve the full name of the `nginx` pod:
```ShellSession
POD_NAME=$(kubectl get pods -l app=nginx -o jsonpath="{.items[0].metadata.name}")
```
Forward port `8080` on your local machine to port `80` of the `nginx` pod:
```ShellSession
kubectl port-forward $POD_NAME 8080:80
```
> Output
```ShellSession
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
```
In a new terminal make an HTTP request using the forwarding address:
```ShellSession
curl --head http://127.0.0.1:8080
```
> Output
```ShellSession
HTTP/1.1 200 OK
Server: nginx/1.19.1
Date: Thu, 13 Aug 2020 11:12:04 GMT
Content-Type: text/html
Content-Length: 612
Last-Modified: Tue, 07 Jul 2020 15:52:25 GMT
Connection: keep-alive
ETag: "5f049a39-264"
Accept-Ranges: bytes
```
Switch back to the previous terminal and stop the port forwarding to the `nginx` pod:
```ShellSession
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80
Handling connection for 8080
^C
```
#### Logs
In this section you will verify the ability to [retrieve container logs](https://kubernetes.io/docs/concepts/cluster-administration/logging/).
In this section you will verify the ability to [execute commands in a container](https://kubernetes.io/docs/tasks/debug-application-cluster/get-shell-running-container/#running-individual-commands-in-a-container).
Print the nginx version by executing the `nginx -v` command in the `nginx` container:
```ShellSession
kubectl exec -ti $POD_NAME -- nginx -v
```
> Output
```ShellSession
nginx version: nginx/1.19.1
```
### Kubernetes services
#### Expose outside of the cluster
In this section you will verify the ability to expose applications using a [Service](https://kubernetes.io/docs/concepts/services-networking/service/).
Expose the `nginx` deployment using a [NodePort](https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport) service:
> The LoadBalancer service type can not be used because your cluster is not configured with [cloud provider integration](https://kubernetes.io/docs/getting-started-guides/scratch/#cloud-provider). Setting up cloud provider integration is out of scope for this tutorial.
Retrieve the node port assigned to the `nginx` service: